229 results match your criteria: "Japan International Research Center for Agricultural Sciences (JIRCAS)[Affiliation]"

Aims: High Phosphorus (P) efficiencies such as internal P utilization efficiency (PUE) and P acquisition efficiency (PAE) are crucial for upland rice production, particularly on highly P-fixing soils like Andosols. While the effect of root traits associated with high PAE in upland rice has been studied intensively, less attention has been given to the origin of P (native soil-P versus fertilizer-P) taken up by plants when evaluating differences in P efficiency. Here we aim to evaluate the efficiency of different upland rice genotypes to acquire native soil-P and fertilizer-P.

View Article and Find Full Text PDF

New and simple crop yield prediction methods are expected to be developed owing to the increasing environmental stress caused by climate change. Algorithms of machine learning could be a powerful tool for predicting crop yield; however, the required feature variables and differences in their prediction accuracy are poorly addressed. The objectives of this study were to identify the best combination of feature variables to predict the yield of cowpea (Vigna unguiculata), which is widely grown in central Sudan Savanna under environmentally restricted conditions, and clarify the differences in the accuracy of major machine learning algorithms.

View Article and Find Full Text PDF

Land plants have evolved a hydrophobic cuticle on the surface of aerial organs as an adaptation to ensure survival in terrestrial environments. Cuticle is mainly composed of lipids, namely cutin and intracuticular wax, with epicuticular wax deposited on plant surface. The composition and permeability of cuticle have a large influence on its ability to protect plants against drought stress.

View Article and Find Full Text PDF

Herbivorax saccincola A7 is an anaerobic alkali-thermophilic lignocellulolytic bacterium that possesses a cellulosome and high xylan degradation ability. To understand the expression profile of extracellular enzymes by carbon sources, quantitative real-time PCR was performed on all cellulosomal and non-cellulosomal enzyme genes of H. saccincola A7 using cellulose and xylan as carbon sources.

View Article and Find Full Text PDF

Quinoa is emerging as a key seed crop for global food security due to its ability to grow in marginal environments and its excellent nutritional properties. Because quinoa is partially allogamous, we have developed quinoa inbred lines necessary for molecular genetic analysis. Our comprehensive genomic analysis showed that the quinoa inbred lines fall into three genetic subpopulations: northern highland, southern highland, and lowland.

View Article and Find Full Text PDF

Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals.

View Article and Find Full Text PDF

Sedentary animals choose appropriate refuges against predators, while migratory ones may not necessarily do so. In ectotherms, refuge selection is critical during low temperatures, because they cannot actively evade predators. To understand how migratory ectotherms alter their defensive behaviors depending on refuge quality in cold temperatures, we evaluated migratory gregarious desert locust nymphs (Schistocerca gregaria) in the Sahara Desert, where daily thermal constraints occur.

View Article and Find Full Text PDF

Background: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T generation.

Results: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities.

View Article and Find Full Text PDF

Soybean [(L.)Merr.] is a leading oil-bearing crop and cultivated globally over a vast scale.

View Article and Find Full Text PDF

Introduction: One-third of the human population consumes insufficient zinc (Zn) to sustain a healthy life. Zn deficiency can be relieved by increasing the Zn concentration ([Zn]) in staple food crops through biofortification breeding. Rice is a poor source of Zn, and in countries predominantly relying on rice without sufficient dietary diversification, such as Madagascar, Zn biofortification is a priority.

View Article and Find Full Text PDF

Salt stress poses a significant challenge to crop productivity, and understanding the genetic basis of salt tolerance is paramount for breeding resilient soybean varieties. In this study, a soybean natural population was evaluated for salt tolerance during the germination stage, focusing on key germination traits, including germination rate (GR), germination energy (GE), and germination index (GI). It was seen that under salt stress, obvious inhibitions were found on these traits, with GR, GE, and GI diminishing by 32% to 54% when compared to normal conditions.

View Article and Find Full Text PDF

Soybean ( L.) is an important crop in Asia, accounting for 17% of global soybean cultivation. However, this crop faces formidable challenges from the devastating foliar disease, Asian Soybean Rust (ASR), caused by , a biotrophic fungus with a broad host range, causing substantial yield losses (10-100%) in Asia.

View Article and Find Full Text PDF

Proton (H) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H release linked to OAs excretion under Al stress has not been fully elucidated.

View Article and Find Full Text PDF

Activated carbon (AC) is becoming the limelight due to its widespread application as an adsorbent for wastewater treatment, gases, and catalysis. However, its high consumption and price have drawn more attention to the sustainable use of natural resources as precursor for AC production. This study focuses on synthesising AC from two types of oil palm trunk (OPT) fibres, a significant agricultural waste products produced by Malaysia's thriving palm oil industries.

View Article and Find Full Text PDF

Feed shortage in the tropics is a major constraint to the production of livestock products such as milk and meat. In order to effectively utilize of local feed resources, the selected lactic acid bacteria (LAB) strain was used to prepare Napier grass and sugarcane top silage. The results showed that the two silages inoculated with LAB formed a co-occurrence microbial network dominated by during the fermentation process, regulated the microbial community structure and metabolic pathways, and improved the silage fermentation quality.

View Article and Find Full Text PDF

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium EW123 (CDH) was cloned and characterized.

View Article and Find Full Text PDF

A large number of studies have explored the separate roles of information and trust in consumer choices of organic food, but little attention has been paid to exploring the interactive effects of information and trust. Here, for the first time to our knowledge, we explored the joint effects of information and consumers' trust in shaping consumer preferences for organic food. A hypothetical choice experiment was employed to elicit consumer preferences for organic food, and a between-subject design approach was used to explore the effects of information.

View Article and Find Full Text PDF

Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields. Recent advances in molecular biology have revealed the mechanisms underlying rice tillering; however, in rice breeding and cultivation, there remain limited genes or alleles suitable for effective tillering and high yields.

View Article and Find Full Text PDF

Where and which countries should receive higher priority for improving inorganic fertilizer use in rice fields in sub-Saharan Africa (SSA)? This study addressed this question by assessing the spatial variation in fertilizer use and its association with rice yield and yield gap in 24 SSA countries through a systematic literature review of peer-reviewed papers, theses, and grey literature published between 1995 and 2021. The results showed a large variation in N, P, and K fertilizer application rates and rice yield and an opportunity for narrowing the yield gap by increasing N and P rates, especially in irrigated rice systems. We identified clusters of sites/countries based on nutrient input and yield and suggested research and development strategies for improving yields and optimizing nutrient use efficiencies.

View Article and Find Full Text PDF

As the global population increases and the economy grows rapidly, the demand for livestock products such as meat, egg and milk continue to increase. The shortage of feed in livestock production is a worldwide problem restricting the development of the animal industry. Natural woody plants are widely distributed and have a huge biomass yield.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays important roles not only in maintaining the productivity and functioning of aquatic ecosystems but also in the global carbon cycle, although the sources and biogeochemical functions of terrestrially derived DOM have not been fully elucidated, particularly in the tropics and subtropics. This study aimed to evaluate the factors influencing spatiotemporal variability in (i) the concentration and composition of DOM, including dissolved organic carbon (DOC), ultraviolet absorption coefficient at 254-nm wavelength (a), and components identified by fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC), and (ii) the concentration of dissolved iron (DFe) across freshwater systems (rivers, forested streams, and dam reservoirs) on a tropical island (Ishigaki Island, Japan) based on the results of water quality monitoring at 2-month intervals over a 2-year period. Random forests (RF) machine learning algorithm was employed, with the catchment characteristics (land use, soil type) and water temperature as the predictor variables for DOM and the composition of DOM (EEM-PARAFAC components) and hydrochemistry (water temperature, pH, and concentrations of divalent cations) as the predictor variables for DFe.

View Article and Find Full Text PDF