1,923 results match your criteria: "James Franck Institute[Affiliation]"

Lead Adsorption and Desorption at the Barite (001) Surface in the Presence of EDTA.

ACS ES T Water

January 2025

School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367, United States.

Scaling minerals, such as barite, can cause detrimental consequences for oil/gas pipelines and water systems, but their formation can be inhibited by organic chelators such as ethylenediaminetetraacetic acid (EDTA). Here, we resolve how EDTA affects sorption and desorption of Pb at the barite (001) surface using a combination of X-ray scattering and microscopy measurements. In the presence of EDTA, Pb incorporated in the topmost part of the barite surface and adsorbed as inner-sphere complexes on the surface.

View Article and Find Full Text PDF

A hybrid meta on-top functional for multiconfiguration pair-density functional theory.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431.

Multiconfiguration pair-density functional theory (MC-PDFT) was proposed a decade ago, but it is still in the early stage of density functional development. MC-PDFT uses functionals that are called on-top functionals; they depend on the density and the on-top pair density. Most MC-PDFT calculations to date have been unoptimized translations of generalized gradient approximations (GGAs) of Kohn-Sham density functional theory (KS-DFT).

View Article and Find Full Text PDF

On the emergence of machine-learning methods in bottom-up coarse-graining.

Curr Opin Struct Biol

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

Machine-learning methods have gained significant attention in the computational chemistry community as a viable approach to molecular modeling and analysis. Recent successes in utilizing neural networks to learn atomistic force-fields which 'coarse-grain' electronic structure have inspired similar applications to the thermodynamic coarse-graining of chemical and biological systems. In this review, we discuss the current viability and challenges in using machine-learning methods to represent coarse-grained force-fields, as well as the utility of machine-learning in various aspects of coarse-grained modeling.

View Article and Find Full Text PDF

The response of ionic solutions to time-varying electric fields, quantified by a frequency-dependent conductivity, is essential in many electrochemical applications. Yet, it constitutes a challenging problem due to the combined effect of Coulombic interactions, hydrodynamics, and thermal fluctuations. Here, we study the frequency-dependent conductivity of ionic solutions using a stochastic density functional theory.

View Article and Find Full Text PDF

A modular and flexible open source cell incubator system for mobile and stationary use.

HardwareX

December 2024

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland.

Culturing living cells requires the maintenance of physiological conditions for extended periods of time. Here, we introduce a versatile and affordable incubation system, addressing the limitations of traditional incubation systems. Conventionally, stationary cell incubators maintain constant temperature and gas levels for cell culturing.

View Article and Find Full Text PDF

Kinetic Implications of IP Anion Binding on the Molecular Switch of the HIV-1 Capsid Assembly.

bioRxiv

December 2024

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America.

HIV-1 capsid proteins (CA) self-assemble into a fullerene-shaped capsid, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly-Gly (TVGG) motif either assumes a disordered coil or a 3 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions.

View Article and Find Full Text PDF

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.

View Article and Find Full Text PDF

The protein hormone insulin forms a homodimer that must dissociate to bind to its receptor. Understanding the kinetics and mechanism of dissociation is essential for the rational design of therapeutic analogs. In addition to its physiological importance, this dissociation process serves as a paradigm for coupled (un)folding and (un)binding.

View Article and Find Full Text PDF

Conical intersections are ubiquitous in the energy landscape of chemical systems, drive photochemical reactivity, and are extremely challenging to observe spectroscopically. Using two-dimensional electronic spectroscopy, we observe the nonadiabatic dynamics in Wurster's Blue after excitation to the lowest two vibronic excited states. The excited populations relax ballistically through a conical intersection in 55 fs to the electronic ground state potential energy surface as the molecule undergoes an intramolecular electron transfer.

View Article and Find Full Text PDF

Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.

View Article and Find Full Text PDF

The unique properties and processability of conducting and semiconducting organic materials have fascinated scientists since their discovery. Of this broad class of materials, conductive coordination polymers are of immense recent interest due to their innate modularity and tunability. However, these materials are typically generated as powders and, in some cases, single crystals which significantly limits possible processing and many applications.

View Article and Find Full Text PDF

The physics of complex systems stands to greatly benefit from the qualitative changes in data availability and advances in data-driven computational methods. Many of these systems can be represented by interacting degrees of freedom on inhomogeneous graphs. However, the lack of translational invariance presents a fundamental challenge to theoretical tools, such as the renormalization group, which were so successful in characterizing the universal physical behaviour in critical phenomena.

View Article and Find Full Text PDF

Ultrafast Symmetry Control in Photoexcited Quantum Dots.

Adv Mater

November 2024

Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA.

Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales.

View Article and Find Full Text PDF

Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly.

bioRxiv

November 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907.

Article Synopsis
  • M is a crucial structural protein in coronaviruses, specifically SARS-CoV-2, playing a key role in forming infectious virus particles and existing in two conformational states.
  • The study identifies a specific interaction between the M protein and a type of lipid (ceramide-1-phosphate) that influences M's structure and its ability to facilitate virus assembly.
  • Disrupting this lipid-protein interaction impacts M's localization and its interactions with other viral proteins, ultimately hindering the virus's ability to enter host cells.
View Article and Find Full Text PDF

Recent experiments have realized exciton condensation in bilayer materials such as graphene double layers and the van der Waals heterostructure MoSe-WSe with the potential for nearly frictionless energy transport. Here we computationally observe the microscopic beginnings of exciton condensation in a molecular-scale fragment of MoSe-WSe, using advanced electronic structure methods based on reduced density matrices. We establish a connection between the signature of exciton condensation-the presence of a large eigenvalue in the particle-hole reduced density matrix-and experimental evidence of exciton condensation in the material.

View Article and Find Full Text PDF

Entropy production is an essential aspect of creating and maintaining nonequilibrium systems. Despite their ubiquity, calculation of entropy production rates is challenging for high-dimensional systems, so it has only been reported for simple (i.e.

View Article and Find Full Text PDF

Surface Plasmons in Two-Dimensional MXenes.

J Phys Chem Lett

November 2024

James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.

MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding.

View Article and Find Full Text PDF

Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids.

J Chem Theory Comput

November 2024

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.

A plethora of key biological events occur at the cellular membrane where the large spatiotemporal scales necessitate dimensionality reduction or coarse-graining approaches over conventional all-atom molecular dynamics simulation. Constructing coarse-grained descriptions of membranes systematically from statistical mechanical principles has largely remained challenging due to the necessity of capturing amphipathic self-assembling behavior in coarse-grained models. We show that bottom-up coarse-grained lipid models can possess metastable morphological behavior and that this potential metastability has ramifications for accurate development and training.

View Article and Find Full Text PDF

Vibrational Relaxation Completes the Excitation Energy Transfer and Localization of Vibronic Excitons in Allophycocyanin α-β.

J Phys Chem Lett

November 2024

Department of Chemistry, James Franck Institute, The Institute of Biophysical Dynamics, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Phycobilisomes are light-harvesting complexes that play a key role in photosynthesis in cyanobacteria, which generate more than 40% of the world's oxygen. The near-unity excitation energy transfer efficiency from phycobilisomes to photosystems highlights its importance in understanding efficient energy transfer processes. Spectroscopic studies have shown that the 280 fs rapid excitonic downhill energy transfer within the α-β chromophore dimer in allophycocyanin (APC), a subunit of phycobilisomes, is crucial to this efficiency.

View Article and Find Full Text PDF

Resonant Vibrational Enhancement of Downhill Energy Transfer in the -Phycocyanin Chromophore Dimer.

J Phys Chem Lett

November 2024

Department of Chemistry, James Franck Institute, The Institute of Biophysical Dynamics, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Energy transfer between electronically coupled photosynthetic light-harvesting antenna pigments is frequently assisted by protein and chromophore nuclear motion. This energy transfer mechanism usually occurs in the weak or intermediate system-bath coupling regime. Redfield theory is frequently used to describe the energy transfer in this regime.

View Article and Find Full Text PDF
Article Synopsis
  • * The n-hexadecyl ionomer (n = 16) significantly reduces kinetics by up to 56.5% and 60% for H and CH, while the n-decyl ionomer (n = 10) achieves a 59.9% increase in Faradaic efficiency for CH production compared to its methyl counterpart.
  • * The research highlights that modifying side chains can enhance the selectivity of reactions and improve the overall performance of catalysts, achieving
View Article and Find Full Text PDF

Megamolecule Self-Assembly Networks: A Combined Computational and Experimental Design Strategy.

J Am Chem Soc

November 2024

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.

This work describes the use of computational strategies to design megamolecule building blocks for the self-assembly of lattice networks. The megamolecules are prepared by attaching four Cutinase-SnapTag fusion proteins (CS fusions) to a four-armed linker, followed by functionalizing each fusion with a terpyridine linker. This functionality is designed to participate in a metal-mediated self-assembly process to give networks.

View Article and Find Full Text PDF

Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials.

View Article and Find Full Text PDF

We study the rheology of bidisperse non-Brownian suspensions using particle-based simulation, mapping the viscosity as a function of the size ratio of the species, their relative abundance, and the overall solid content. The variation of the viscosity with applied stress exhibits shear-thickening phenomenology irrespective of composition, though the stress-dependent limiting solids fraction governing the viscosity and its divergence point are nonmonotonic in the mixing ratio. Contact force data demonstrate an asymmetric exchange in the dominant stress contribution from large-large to small-small particle contacts as the mixing ratio of the species evolves.

View Article and Find Full Text PDF

Intermittency refers to the broken self-similarity of turbulent flows caused by anomalous spatiotemporal fluctuations. In this Letter, we ask how intermittency is affected by a nondissipative viscosity, known as odd viscosity (also Hall viscosity or gyroviscosity), which appears in parity-breaking fluids such as magnetized polyatomic gases, electron fluids under magnetic field, and spinning colloids or grains. Using a combination of Navier-Stokes simulations and theory, we show that intermittency is suppressed by odd viscosity at small scales.

View Article and Find Full Text PDF