639 results match your criteria: "JAIN University[Affiliation]"

Biotechnology for propagation and secondary metabolite production in Bacopa monnieri.

Appl Microbiol Biotechnol

March 2022

Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.

Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family.

View Article and Find Full Text PDF

Agriculture is having a major role in solving issues associated with food shortages across the globe. Carbendazim (CZM) is one of the fungicides which is commonly used in agriculture to grow crops in large quantities and fast. Monitoring CZM content is in high demand for environmental remediation.

View Article and Find Full Text PDF

Comprehensive Analysis of Spinel-Type Mixed Metal Oxide-Functionalized Polysulfone Membranes toward Fouling Resistance and Dye and Natural Organic Matter Removal.

ACS Omega

February 2022

Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia.

Nanostructured polymeric membranes are of great importance in enhancing the antifouling properties during water filtration. Nanomaterials with tunable size, morphology and composition, surface modification, and increased functionality provide considerable opportunities for effective wastewater treatment. Thus, in this work, an attempt has been made to use spinel-structured MnCoO as a nanofiller in the fabrication of nanostructured polysulfone (PSF) mixed matrix membranes and is investigated in terms of morphology, hydrophilicity, permeability, protein and natural organic matter separation, dye removal, and, finally, antifouling properties.

View Article and Find Full Text PDF

A new protocol for the N-alkylation of amines with alcohols for the synthesis of tertiary amines in the presence of MnCl as a catalyst, under microwave conditions, is described. The advantages of this protocol include stable reaction profiles, a wide substrate variety, excellent yields, low cost, high yields, and easy workup conditions. The anticancer efficacy of all the synthesized compounds was tested in vitro against various cancer cell lines, such as MCF-7, MDA-MB-231 (human breast), HT-29, HCT 116 (colon cancer), A549 (human lung carcinoma), and Vero cells.

View Article and Find Full Text PDF

Solvent-based recycling of plastic can offer the main improvement when it is employed for pyrolysis-catalytic steam reforming. In this research, plastic waste dissolved in phenol was used as a feed for catalytic cracking and steam reforming reactions for valuable liquid fuels and hydrogen production, which is gaining the attention of researchers globally. Microplastic wastes (MPWs) are tiny plastic particles that arise due to product creation and breakdown of larger plastics.

View Article and Find Full Text PDF

To explore effective antituberculosis agents, a new class of imidazoles and benzimidazoles linked ethionamide analogs were designed and synthesized. The elemental analysis, H NMR, C NMR and mass spectral data were used to characterize all of the novel analogs. In vitro activity against Mycobacterium tuberculosis (Mtb) H37Rv was assessed for all of the target compounds.

View Article and Find Full Text PDF

Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions.

Dalton Trans

March 2022

Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.

Over the past decade, the reactivity of 2-phosphaethynolate (OCP), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE; E = P, As) with main-group element, transition metal, and f-block metal scaffolds.

View Article and Find Full Text PDF

Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum.

Chemosphere

March 2022

School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.

The fatty acid methyl ester (FAME) production from dairy effluent scum as a sustainable energy source using CaO obtained from organic ash over titanium dioxide nanoparticles (TNPs) as the transesterification nano-catalyst has been studied. The physical and chemical properties of the synthesized catalysts were characterized, and the effect of different experimental factors on the biodiesel yield was studied. It was revealed that the CaO-TiO nano-catalyst displayed bifunctional properties, has both basic and acid phases, and leads to various effects on the catalyst activity in the transesterification process.

View Article and Find Full Text PDF

In the present work, exfoliated graphite oxide (E-GO) was prepared by sonicating graphite oxide (GO) (prepared by modified Hummer's and Offemam methods). Prepared GO and E-GO were characterized using infrared absorption spectroscopy, X-ray diffraction, and scanning electron microscopy. The electrocatalytic properties of GO and E-GO towards detection of dopamine (DA), uric acid (UA), and folic acid (FA) were investigated using cyclic voltammetry and differential pulse voltammetry.

View Article and Find Full Text PDF

Inner Filter Effect as a Boon in Perovskite Sensing Systems to Achieve Higher Sensitivity Levels.

ACS Appl Mater Interfaces

December 2021

Centre for Nano and Material Sciences, Jain University, Jakkasandra Post, Bangalore Rural 562112, India.

Perovskite quantum dots (PQDs) exhibit exceptional fluorescence property and are potential candidates for fluorescent metal-ion sensors. The present work shows the presence of inner filter effect (IFE) in perovskite sensing systems and its significance in enhancing the detection limits. Two different sensing systems (with a different extent of IFE), one with simple long-chain monodentate ligand-capped PQDs and the other with short-chain bidentate ligand capped PQDs, were developed toward sensing Co.

View Article and Find Full Text PDF

In the present work, Orange CD was chosen as an intriguing modifier for the electropolymerization on the surface of CPE by the CV technique. A novel, sensitive, and cost-effective poly (Orange CD) MCPE (PoOCD/MCPE) sensor was utilized for the selective detection of paracetamol (PA) in 0.2 M phosphate buffer solution (PBS) of pH 7.

View Article and Find Full Text PDF

Proteinaceous materials are promising for membranes due to greater mechanical strength, in-built functionalities, amphiphilicity and high molecular loading capacity. Herein, a novel strategy of functionalization of silk nanofibrils with metal oxyhydroxide and fabrication of ultrafast permeable multi-layered and self-cleaning membrane was demonstrated. Typically, 1.

View Article and Find Full Text PDF

Paraoxon is one of the pesticide that can induce toxicity to nervous system of living organisms. In this work, we focused on synthesizing the catalyst Bismuth Vanadate with the properties that can sense the presence of organophosphorus compounds and characterized them with various characterization methods. The structural studies done by XRD, UV spectroscopy and FTIR spectroscopy.

View Article and Find Full Text PDF

An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence.

View Article and Find Full Text PDF

At present energy and environmental remediation are of highest priority for the well defined sustainability. Multifunctional materials that solve both the issues are on high demand. In the present work, a simple method has been followed to extract carbon spheres fromTamarindus indica(commonly known astamarind fruit) shelland doped with nitrogen (N-CS).

View Article and Find Full Text PDF

First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes.

Chem Rev

November 2021

Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals.

View Article and Find Full Text PDF
Article Synopsis
  • Minerals play a crucial role in the growth, reproduction, and overall health of goats, particularly as co-factors for enzymes, with zinc (Zn) and copper (Cu) being essential in goat nutrition.
  • The availability and absorption of these minerals from feed can be low due to complex feed components, necessitating external supplementation for proper animal function.
  • This review focuses on using organic sources of Zn and Cu to enhance male goat fertility, particularly by improving semen quality and antioxidant protection, while highlighting the need for further research on their absorption and molecular effects.
View Article and Find Full Text PDF

In recent times, the synthesis of metal nanoparticles (NPs) using plant extracts has recently emerged as an intriguing issue in the field of nanoscience and nanobiotechnology, with numerous advantages over conventional physicochemical approaches. In the current study, ZnO NPs were synthesized from Synadium grantii leaf extricate with varying Cu-dopant concentrations. In order to the synthesis of the pure and Cu-doped ZnO NPs, zinc nitrate hexahydrate and copper nitrate trihydrate were used as a precursor in leaf extracts of the plant.

View Article and Find Full Text PDF

Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review.

ACS Biomater Sci Eng

October 2022

Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.

Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials.

View Article and Find Full Text PDF

Due to the ever-increasing industrialization, it is critical to protect the environment and conserve water resources by developing efficient wastewater treatment methods. Traditional methods that simultaneously remove heavy metal ions and complex dyes are too expensive and tedious to commercialize. This work demonstrates the versatility, effectiveness, and potential of a biomass-derived adsorbent (from a mangrove fruit of Rhizophora mucronata) synthesized using a simple route for rapid adsorption of complex dyes and heavy metals with an efficiency of near unity.

View Article and Find Full Text PDF

Coumarins (2-chromen-2-ones), also known as benzopyran-2-ones, are a family of naturally occurring heterocyclic ring systems that contain a lactone moiety. Coumarins exhibit a wide range of well-studied pharmacological properties. Over the last few decades, as a result of advances in diverse oriented synthetic routes, physicochemical properties and numerous biological activities, coumarins have become globally studied molecules from various synthetic and medicinal chemists.

View Article and Find Full Text PDF

Herein, low-cost diatomite (DE) and bentonite (BE) materials were surface modified with Ni-Fe layered double hydroxide (LDHs) (represented as NFD and NFB respectively), using a simple co-precipitation procedure for the removal of methyl orange (MO) dye from water. The adsorbents of both before and after MO adsorption have been studied by XRD, N adsorption-desorption isotherm, FTIR, FESEM-EDX and XPS characterization. The zeta potential analysis was used to observe the surface charge of adsorbents within the pH ranges of 4-10.

View Article and Find Full Text PDF

Detection of anticancer drug (doxorubicin) using an electrochemical sensor is developed based on a transition metal vanadate's related carbon composite material. With an environmentally friendly process, we have synthesized a metal oxide composite of iron vanadate nanoparticle assembled with sulfur-doped carbon nanofiber (FeV/SCNF). The FeV/SCNF composite was characterized using XRD, TEM, FESEM with elemental mapping, XPS and EDS.

View Article and Find Full Text PDF

Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner.

J Control Release

October 2021

NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States. Electronic address:

There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.

View Article and Find Full Text PDF

Aggregation-induced emission based organic heterocyclic luminogens bearing conjugated electronic structures showed much attention due to its excellent fluorescence in aggregation state. In this communication, a novel conjugated blue light emitting imidazole molecule is synthesized by one pot multicomponent reaction route is reported for the first time. The prepared molecule exhibits a strong fluorescence in aggregation state with exceptional properties, such as high purity, inexpensive, eco-friendly, large scale production, high photostability, etc.

View Article and Find Full Text PDF