2 results match your criteria: "J. Craig Venter Institute Inc.[Affiliation]"

Many bacterial and archaeal genomes are of a similar size to molecules that have been cloned in the yeast Saccharomyces cerevisiae and thus might be clonable as single, circular episomes in this host. Yeast offers a variety of efficient tools for the manipulation and study of cloned DNA. One strategy to clone a genome in yeast is to cotransform yeast spheroplasts with the genome of interest and a linear yeast vector whose termini are homologous to a spot in the genome.

View Article and Find Full Text PDF

Enzymatic assembly of overlapping DNA fragments.

Methods Enzymol

September 2011

J. Craig Venter Institute Inc., Synthetic Biology Group, La Jolla, California, USA.

Three methods for assembling multiple, overlapping DNA molecules are described. Each method shares the same basic approach: (i) an exonuclease removes nucleotides from the ends of double-stranded (ds) DNA molecules, exposing complementary single-stranded (ss) DNA overhangs that are specifically annealed; (ii) the ssDNA gaps of the joined molecules are filled in by DNA polymerase, and the nicks are covalently sealed by DNA ligase. The first method employs the 3'-exonuclease activity of T4 DNA polymerase (T4 pol), Taq DNA polymerase (Taq pol), and Taq DNA ligase (Taq lig) in a two-step thermocycled reaction.

View Article and Find Full Text PDF