43 results match your criteria: "Jülich Centre for Neutron Science (JCNS-1) and Institute of Complex Systems (ICS-1)[Affiliation]"

The shear misfit model for highly viscous flow is based upon a theoretical prediction for its terminal stage in terms of irreversible Eshelby relaxations in five-dimensional shear space. The model is shown to predict a small δ-function (Debye peak) in the dielectric spectrum, in agreement with experimental evidence. It is extended to density fluctuations, and a relation between adiabatic and isothermal compressibility jumps at the glass transition is derived.

View Article and Find Full Text PDF

This paper reports an approach for the fabrication of shape-changing bilayered scaffolds, which allow the growth of aligned skeletal muscle cells, using a combination of 3D printing of hyaluronic acid hydrogel, melt electrowriting of thermoplastic polycaprolactone-polyurethane elastomer, and shape transformation. The combination of the selected materials and fabrication methods allows a number of important advantages such as biocompatibility, biodegradability, and suitable mechanical properties (elasticity and softness of the fibers) similar to those of important components of extracellular matrix (ECM), which allow proper cell alignment and shape transformation. Myoblasts demonstrate excellent viability on the surface of the shape-changing bilayer, where they occupy space between fibers and align along them, allowing efficient cell patterning inside folded structures.

View Article and Find Full Text PDF

By neutron spin echo spectroscopy, we have studied the center of mass motion of short tracer chains on the molecular length scale within a highly entangled polymer matrix. The center of mass mean square displacements of the tracers independent of their molecular weight is subdiffusive at short times until it has reached the size of the tube d; then, a crossover to Fickian diffusion takes place. This observation cannot be understood within the tube model of reptation, but is rationalized as a result of important interchain couplings that lead to cooperative chain motion within the entanglement volume ∼d^{3}.

View Article and Find Full Text PDF

We report the fabrication of scroll-like scaffolds with anisotropic topography using 4D printing based on a combination of 3D extrusion printing of methacrylated alginate, melt-electrowriting of polycaprolactone fibers, and shape-morphing of the fabricated object. A combination of 3D extrusion printing and melt-electrowriting allows programmed deposition of different materials and fabrication of structures with high resolution. Shape-morphing allows the transformation of a patterned surface of a printed structure in a pattern on inner surface of a folded object that is used to align cells.

View Article and Find Full Text PDF

Single-ion conducting polymer electrolytes exhibit great potential for next-generation high-energy-density Li metal batteries, although the lack of sufficient molecular-scale insights into lithium transport mechanisms and reliable understanding of key correlations often limit the scope of modification and design of new materials. Moreover, the sensitivity to small variations of polymer chemical structures (e.g.

View Article and Find Full Text PDF

Termination of the G-protein-coupled receptor signaling involves phosphorylation of its C-terminus and subsequent binding of the regulatory protein arrestin. In the visual system, arrestin-1 preferentially binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. Here, we have investigated binding of a synthetic phosphopeptide of bovine rhodopsin (residues 323-348) to the active variants of visual arrestin-1: splice variant p44, and the mutant R175E.

View Article and Find Full Text PDF

Cationic dendrimers are considered one of the best drug transporters in the body. However, in order to improve their biocompatibility, modification of them is required to reduce toxicity. In this way, many dendrimers may lose their original properties, for example, anticancer.

View Article and Find Full Text PDF

Investigations of polymer systems that rely on the interpretation of dynamical scattering results as, e.g., the structure factor S(Q, t) of single chains or chain sections may require the inclusion of effects, as described within the framework of the random phase approximation (RPA) for polymers.

View Article and Find Full Text PDF

Equilibrium dynamics of different folding intermediates and denatured states is strongly connected to the exploration of the conformational space on the nanosecond time scale and might have implications in understanding protein folding. For the first time, the same protein system apomyoglobin has been investigated using neutron spin-echo spectroscopy in different states: native-like, partially folded (molten globule) and completely unfolded, following two different unfolding paths: using acid or guanidinium chloride (GdmCl). While the internal dynamics of the native-like state can be understood using normal mode analysis based on high resolution structural information of myoglobin, for the unfolded and even for the molten globule states, models from polymer science are employed.

View Article and Find Full Text PDF

The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized γ-relaxation at lower temperatures and a so called α2-relaxation at higher temperatures.

View Article and Find Full Text PDF

Urea is a strong denaturing osmolyte that disrupts noncovalent bonds in proteins. Here, we present a small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE) study on the structure and dynamics of the intrinsically disordered myelin basic protein (MBP) denatured by urea. SANS results show that urea-denatured MBP is more compact than ideal polymers, while its secondary structure content is entirely lost.

View Article and Find Full Text PDF

The tracer diffusion coefficient of six different permanent gases in polymer-grafted nanoparticle (GNP) membranes, i.e., neat GNP constructs with no solvent, show a maximum as a function of the grafted chain length at fixed grafting density.

View Article and Find Full Text PDF

Photosynthetic organisms employ two different enzymes for the reduction of the C17 = C18 double bond of protochlorophyllide (Pchlide), yielding the chlorophyll precursor chlorophyllide. First, a nitrogenase-like, light-independent (dark-operative) Pchlide oxidoreductase and secondly, a light-dependent Pchlide oxidoreductase (LPOR). For the latter enzyme, despite decades of research, no structural information is available.

View Article and Find Full Text PDF

We review recent neutron scattering work and related results from simulation and complementary techniques focusing on the microscopic dynamics of polymers under confinement. Confinement is either realized in model porous materials or in polymer nanocomposites (PNC). The dynamics of such confined polymers is affected on the local segmental level, the level of entanglements as well as on global levels: (i) at the segmental level the interaction with the surface is of key importance.

View Article and Find Full Text PDF

The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity.

View Article and Find Full Text PDF

Human guanylate-binding protein 1 (hGBP1) belongs to the family of dynamin-like proteins and is activated by addition of nucleotides, leading to protein oligomerization and stimulated GTPase activity. In vivo, hGBP1 is post-translationally modified by attachment of a farnesyl group yielding farn-hGBP1. In this study, hydrodynamic differences in farn-hGBP1 and unmodified hGBP1 were investigated using dynamic light scattering (DLS), analytical ultracentrifugation (AUC) and analytical size-exclusion chromatography (SEC).

View Article and Find Full Text PDF

Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations.

J Chem Theory Comput

August 2019

Theoretical Physics and Center for Biophysics , Saarland University, Campus E2 6, 66123 Saarbrücken , Germany.

Small-angle X-ray and small-angle neutron scattering (SAXS/SANS) provide unique structural information on biomolecules and their complexes in solution. SANS may provide multiple independent data sets by means of contrast variation experiments, that is, by measuring at different DO concentrations and different perdeuteration conditions of the biomolecular complex. However, even the combined data from multiple SAXS/SANS sets is by far insufficient to define all degrees of freedom of a complex, leading to a significant risk of overfitting when refining biomolecular structures against SAXS/SANS data.

View Article and Find Full Text PDF

The aim of Jscatter is the processing of experimental data and physical models with the focus to enable the user to develop/modify their own models and use them within experimental data evaluation. The basic structures dataArray and dataList contain matrix-like data of different size including attributes to store corresponding metadata. The attributes are used in fit routines as parameters allowing multidimensional attribute dependent fitting.

View Article and Find Full Text PDF

Domain motions in proteins are crucial for biological function. In the present manuscript, we present a neutron spin-echo spectroscopy (NSE) study of native bovine serum albumin (BSA) in solution. NSE allows to probe both global and internal dynamics of the BSA monomer and dimer equilibrium that is formed in solution.

View Article and Find Full Text PDF

We present a platform for the encapsulation of superparamagnetic iron oxide nanocrystals (SPIONs) with a highly stable diblock copolymer shell allowing a homogeneous dispersion of the nanocrystals into a polymer matrix in the resulting nanocomposites. High polymer shell stability was achieved by crosslinking the inner polydiene shell for example in a persulfate based redox process. The advantage of this crosslinking reaction is the avoidance of heat and UV light for the initiation, making it suitable for heat or UV sensitive systems.

View Article and Find Full Text PDF

Core/shell quantum dots/quantum rods are nanocrystals with typical application scenarios as ensembles. Resonance energy transfer is a possible process between adjacent nanocrystals. Highly excited nanocrystals can also relax energy by multiexciton recombination, competing against the energy transfer.

View Article and Find Full Text PDF

Confinement Facilitated Protein Stabilization As Investigated by Small-Angle Neutron Scattering.

J Am Chem Soc

October 2018

Centre for Nature Inspired Engineering (CNIE) and Department of Chemical Engineering , University College London, London WC1E 7JE , United Kingdom.

While mesoporous silicas have been shown to be a compelling candidate for drug delivery and the implementation of biotechnological applications requiring protein confinement and immobilization, the understanding of protein behavior upon physical adsorption into silica pores is limited. Many indirect methods are available to assess general adsorbed protein stability, such as Fourier-transform infrared spectroscopy and activity assays. However, the limitation of these methods is that spatial protein arrangement within the pores cannot be assessed.

View Article and Find Full Text PDF

A recent description of the highly viscous flow ascribes it to irreversible thermally activated Eshelby transitions, which transform a region of the undercooled liquid to a different structure with a different elastic misfit to the viscoelastic surroundings. The description is extended to include reversible Eshelby transitions, with the Kohlrausch exponent β as a free parameter. The model answers several open questions in the field.

View Article and Find Full Text PDF

The performance of fuel cells depends largely on the proton diffusion in the proton conducting membrane, the core of a fuel cell. High temperature polymer electrolyte fuel cells are based on a polymer membrane swollen with phosphoric acid as the electrolyte, where proton conduction takes place. We studied the proton diffusion in such membranes with neutron scattering techniques which are especially sensitive to the proton contribution.

View Article and Find Full Text PDF

Protein-polymer conjugation is a widely used technique to develop protein therapeutics with improved pharmacokinetic properties as prolonged half-life, higher stability, water solubility, lower immunogenicity, and antigenicity. Combining biochemical methods, small angle scattering (SAXS/SANS), and neutron spin-echo spectroscopy, here we examine the impact of PEGylation (i.e.

View Article and Find Full Text PDF