80 results match your criteria: "Istituto Italiano di Tecnologia (IIT)─Center for Advanced Biomaterials for Healthcare[Affiliation]"

Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies.

View Article and Find Full Text PDF

MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a.

Biosens Bioelectron

September 2024

Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy. Electronic address:

Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK).

View Article and Find Full Text PDF

A functional 3D full-thickness model for comprehending the interaction between airway epithelium and connective tissue in cystic fibrosis.

Biomaterials

July 2024

Istituto Italiano di Tecnologia-IIT, Center for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci 53, 80125, Napoli, Italy; Interdisciplinary Research Centre on Biomaterials-CRIB, University of Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy; Department of Chemical, Materials and Industrial Production Engineering-DICMAPI, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.

Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear.

View Article and Find Full Text PDF

To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood-brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs' different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method.

View Article and Find Full Text PDF

Neurodegenerative diseases are often characterized by the formation of aggregates of amyloidogenic peptides and proteins, facilitating the formation of neurofibrillary plaques. In this study, we investigate a series of Ru-complexes sharing three-legged piano-stool structures based on the arene ring and glucosylated carbene ligands. The ability of these complexes to bind amyloid His-peptides was evaluated by ESI-MS, and their effects on the aggregation process were investigated through ThT and Tyr fluorescence emission.

View Article and Find Full Text PDF

Novel microparticles have generated growing interest in diagnostics for potential sensitivity and specificity in biomolecule detection and for the possibility to be integrated in a micro-system array as a lab-on-chip. Indeed, bead-based technologies integrated in microfluidics could speed up incubation steps, reduce reagent consumption and improve accessibility of diagnostic devices to non-expert users. To limit non-specific interactions with interfering molecules and to exploit the whole particle volume for bioconjugation, hydrogel microparticles, particularly polyethylene glycol-based, have emerged as promising materials to develop high-performing biosensors since their network can be functionalized to concentrate the target and improve detection.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is one of the most frequent genetic diseases, caused by dysfunction of the CF transmembrane conductance regulator (CFTR) chloride channel. CF particularly affects the epithelium of the respiratory system. Therapies aim at rescuing CFTR defects in the epithelium, but CF genetic heterogeneity hinders the finding of a single and generally effective treatment.

View Article and Find Full Text PDF

Direct, precise, enzyme-free detection of miR-103-3p in real samples by microgels with highly specific molecular beacons.

Talanta

July 2023

Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy. Electronic address:

Low abundance, small size, and sequence similarities render microRNA (miRNAs) detection challenging, particularly in real samples, where quantifying weakly expressed miRNAs can be arduous due to interference of more abundant molecules. The standard quantitative reverse transcription polymerase chain reaction (qRT-PCR) requires multiple steps, thermal cycles, and costly enzymatic reactions that can negatively affect results. Here we present a direct, precise, enzyme-free assay based on microgels particles conjugating molecular beacons (MB) capable of optically detecting low abundant miRNAs in real samples.

View Article and Find Full Text PDF

Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules.

J Funct Biomater

February 2023

Department of Chemical, Materials, and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.

Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues.

View Article and Find Full Text PDF

Objective: In this context, our study aimed to ascertain whether the esterification of 24-hydroxycholesterol, a process heavily affected by oxidative stress, is altered in ALS.

Methods: The study examined the level of 24-hydroxycholesteryl esters in cerebrospinal fluid and plasma of 18 ALS patients by spectroscopic technique as Ultra-high performance liquid chromatography mass spectrometry (UPLC-MS).

Results: The level of 24-hydroxycholesteryl esters in cerebrospinal fluid was found to be lower as the brain-blood barrier was damaged.

View Article and Find Full Text PDF

Self-assembling hydrogels are receiving great attention for both biomedical and technological applications. Self-assembly of protein/peptides as well as organic molecules is commonly induced in response to external triggers such as changes of temperature, concentration, or pH. An interesting strategy to modulate the morphology and mechanical properties of the gels implies the use of metal ions, where coordination bonds regulate the dynamic cross-linking in the construction of hydrogels, and coordination geometries, catalytic, and redox properties of metal ions play crucial roles.

View Article and Find Full Text PDF

Modular tissue engineering (mTE) strategies aim to build three-dimensional tissue analoguesby the sapient combination of cells, micro-scaffolds (-scaffs) and bioreactors. The translation of these newly engineered tissues into current clinical approaches is, among other things, dependent on implant-to-host microvasculature integration, a critical issue for cells and tissue survival. In this work we reported, for the first time, a computer-aided modular approach suitable to build fully vascularized hybrid (biological/synthetic) constructs (bio-constructs) with micro-metric size scale control of blood vessels growth and orientation.

View Article and Find Full Text PDF

In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues.

View Article and Find Full Text PDF

Here, we propose an immune-responsive human Microbiota-Intestine axis on-chip as a platform able to reproduce the architecture and vertical topography of the microbiota with a complex extracellular microenvironment consisting of a responsive extra cellular matrix (ECM) and a plethora of immune-modulatory mediators released from different cell populations such as epithelial, stromal, blood and microbial species in homeostatic and inflamed conditions. Firstly, we developed a three-dimensional human intestine model (3D-hI), represented by an instructive and histologically competent ECM and a well-differentiated epithelium with mucus-covered microvilli. Then, we replicated the microenvironmental anaerobic condition of human intestinal lumen by fabricating a custom-made microbiota chamber (M) on the apical side of the Microbiota-human Intestine on chip (MihI-oC), establishing the physiological oxygen gradient occurring along the thickness of human small intestine from the serosal to the luminal side.

View Article and Find Full Text PDF

In the last decade, PEG-based hydrogels have been extensively used for the production of microparticles for biosensing applications. The biomolecule accessibility and mass transport rate represent key parameters for the realization of sensitive microparticles, therefore porous materials have been developed, mainly resorting to the use of inert porogens and copolymers with different chain lengths. However, very limited information is reported regarding the addition of cleavable crosslinkers to modulate the network porosity.

View Article and Find Full Text PDF

In cancer therapy, stimulus-responsive drug delivery systems are of particular interest for reducing side effects in healthy tissues and improving drug selectivity in the tumoral ones. Here, a strategy for the preparation of a photo-responsive cross-linked trilayer deposited onto an oil-in-water nanoemulsion via a layer-by-layer technique is reported. The system is made of completely biocompatible materials such as soybean oil, egg lecithin and glycol chitosan, with heparin as the polymeric shell.

View Article and Find Full Text PDF

To date, in personalized medicine approaches, single-cell analyses such as circulating tumour cells (CTC) are able to reveal small structural cell modifications, and therefore can retrieve several biophysical cell properties, such as the cell dimension, the dimensional relationship between the nucleus and the cytoplasm and the optical density of cellular sub-compartments. On this basis, we present in this study a new morphological measurement approach for the detection of vital CTC from pleural washing in individual non-small cell lung cancer (NSCLC) patients. After a diagnosis of pulmonary malignancy, pleural washing was collected from nine NSCLC patients.

View Article and Find Full Text PDF

Tutorial: using nanoneedles for intracellular delivery.

Nat Protoc

October 2021

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery.

View Article and Find Full Text PDF

The control of the three-dimensional (3D) polymer network structure is important for permselective materials when specific biomolecule detection is needed. Here we investigate conditions to obtain a tailored hydrogel network that combines both molecular filtering and molecular capture capabilities for biosensing applications. Along this line, short oligonucleotide detection in a displacement assay is set within PEGDA hydrogels synthetized by UV radical photopolymerization.

View Article and Find Full Text PDF

The development of assays for protein biomarkers in complex matrices is a demanding task that still needs implementation of new approaches. Antibodies as capture agents have been largely used in bioassays but their low stability, low-efficiency production, and cross-reactivity in multiplex approaches impairs their larger applications. Instead, synthetic peptides, even with higher stability and easily adapted amino acid sequences, still remain largely unexplored in this field.

View Article and Find Full Text PDF

Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio.

View Article and Find Full Text PDF

Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward Tissue Building.

ACS Appl Mater Interfaces

March 2021

Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy.

Porous microscaffolds (μ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) μ-scaffs with a bioinspired trabecular structure that supported adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical μ-scaffs with controllable diameter and full pore interconnectivity.

View Article and Find Full Text PDF

Proteins are widely explored as therapeutic agents, but some issues remain alive in their delivery versus target tissues and organs. Especially in the case of water-labile proteins, they undergo rapid failure if not properly stored or once they have encountered the biological environment. In this framework, delivery systems can be very useful to protect such proteins both during storage and during their administration.

View Article and Find Full Text PDF

Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time.

View Article and Find Full Text PDF

Here, we proposed an innovative organotypic cervical tumor model able to investigate the bi-directional crosstalk between epithelium and stroma as well as the key disease features of the epithelial-mesenchymal transition (EMT) process in vitro. By using a modular tissue assembling approach, we developed 3D cervical stromal models composed of primary human cervical fibroblasts (HCFs) or cervical cancer-associated fibroblasts (CCAFs) embedded in their own ECM to produce 3D normal cervical-instructed stroma (NCIS) or 3D cervical cancer-instructed stroma (CCIS), respectively. Then, we demonstrate the role of the tumor microenvironment (TME) in potentiating the intrinsic invasive attitude of cervical cancer derived SiHa cells and increasing their early viral gene expression by comparing the SiHa behavior when cultured on NCIS or CCIS (SiHa-NCIS or SiHa-CCIS).

View Article and Find Full Text PDF