6 results match your criteria: "Israel. Electronic address: ekurant@univ.haifa.ac.il.[Affiliation]"
Cell Rep
January 2025
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 34988, Israel. Electronic address:
The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.
View Article and Find Full Text PDFiScience
August 2020
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 34988-38, Israel; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address:
Skp1, a component of the ubiquitin E3 ligases, was found to be decreased in the brains of sporadic Parkinson's disease (PD) patients, and its overexpression prevented death of murine neurons in culture. Here we expose the neuroprotective role of the Drosophila skp1 homolog, skpA, in the adult brain. Neuronal knockdown of skpA leads to accumulation of ubiquitinated protein aggregates and loss of dopaminergic neurons accompanied by motor dysfunction and reduced lifespan.
View Article and Find Full Text PDFCurr Opin Immunol
February 2020
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 34988, Israel; Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address:
Glia are heterogeneous and multitasking cell type in the nervous system that supports neuronal function. One of the main glial tasks is removal of unneeded and potentially harmful material through phagocytosis. Glial phagocytosis is highly conserved throughout evolution, which makes genetic model organisms such as Drosophila of great value for investigating its molecular mechanisms.
View Article and Find Full Text PDFCell Rep
November 2019
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 34988, Israel; Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address:
Glial phagocytosis is critical for the development and maintenance of the CNS in vertebrates and flies and relies on the function of phagocytic receptors to remove apoptotic cells and debris. Glial phagocytic ability declines with age, which correlates with neuronal dysfunction, suggesting that increased glial phagocytosis may prevent neurodegeneration. Contradicting this hypothesis, we provide experimental evidence showing that an elevated expression of the phagocytic receptors Six-Microns-Under (SIMU) and Draper (Drpr) in adult Drosophila glia leads to a loss of both dopaminergic and GABAergic neurons, accompanied by motor dysfunction and a shortened lifespan.
View Article and Find Full Text PDFInsect Biochem Mol Biol
June 2019
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 34988, Israel. Electronic address:
Phagocytosis is an evolutionarily conserved mechanism that plays a key role in both host defence and tissue homeostasis in multicellular organisms. A range of surface receptors expressed on different cell types allow discriminating between self and non-self (or altered) material, thus enabling phagocytosis of pathogens and apoptotic cells. The phagocytosis process can be divided into four main steps: 1) binding of the phagocyte to the target particle, 2) particle internalization and phagosome formation, through remodelling of the plasma membrane, 3) phagosome maturation, and 4) particle destruction in the phagolysosome.
View Article and Find Full Text PDFJ Neurosci Methods
January 2019
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 34988, Israel; Department of Genetics and Developmental Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address:
Background: Protein aggregation in neurons is a prominent pathological mark of neurodegeneration. In Parkinson's disease (PD), inclusions of the α-Synuclein (α-Syn) protein form the Lewy bodies in dopaminergic (DA) neurons. Ectopic expression of human α-Syn inDrosophila neurons leads to the protein accumulation, degeneration of DA neurons and locomotor deterioration, and therefore constitutes the present fly PD model.
View Article and Find Full Text PDF