3 results match your criteria: "Irvine School of Medicine. Electronic address: pkaiser@uci.edu.[Affiliation]"
Mol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFMol Cell Proteomics
January 2022
Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA. Electronic address:
Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers.
View Article and Find Full Text PDFMol Cell
October 2019
State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, P.R. China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, School of Medicine, Wuhan University, Wuhan 430072, P.R. China; Guizhou University School of Medicine, Guiyang 550025, P.R. China. Electronic address:
A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains.
View Article and Find Full Text PDF