19 results match your criteria: "Iran University of Science and Technology Tehran Iran.[Affiliation]"

Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence.

View Article and Find Full Text PDF

This study explores the efficacy of a ceramic membrane combining filtration, electrofiltration, and backwashing for oily water treatment. A secondary mullite membrane was synthesized, showcasing high permeate flux (534 LMH), biaxial flexural strength (75.21 MPa), and cost-effectiveness.

View Article and Find Full Text PDF

Among various methods for fabricating polymeric tissue engineering scaffolds, electrospinning stands out as a relatively simple technique widely utilized in research. Numerous studies have delved into understanding how electrospinning processing parameters and specific polymeric solutions affect the physical features of the resulting scaffolds. However, owing to the complexity of these interactions, no definitive approaches have emerged.

View Article and Find Full Text PDF

Background And Aims: One of the most common hemoglobinopathies globally related to blood transfusion and iron overload in the body is thalassemia syndrome. Increasing ferritin levels can cause severe damage to the patient's body organs. This study aims to evaluate the complications of iron overload on vital body organs in patients with transfusion-dependent beta-thalassemia.

View Article and Find Full Text PDF

This study aimed to investigate the potential of polyvinyl alcohol/chitosan nanofibers as a drug delivery system for erythromycin. Polyvinyl alcohol/chitosan nanofibers were fabricated using the electrospinning method and characterized using SEM, XRD, AFM, DSC, FTIR, swelling assessment and viscosity analysis. The drug release kinetics, biocompatibility, and cellular attachments of the nanofibers have been evaluated using release studies and cell culture assays.

View Article and Find Full Text PDF

The world's large lakes and their life-supporting services are rapidly threatened by eutrophication in the warming climate during the Anthropocene. Here, MODIS-Aqua level 3 chlorophyll- data (2018-2021) were used to monitor trophic state in our planet's largest lake, that is, the Caspian Sea that accounts for approximately 40% of the total lacustrine waters on Earth. We also used the in situ measurements of chlorophyll- data (2009-2019) to further verify the accuracy of the data derived from the MODIS-Aqua and to explore the deep chlorophyll- maxima (DCMs) in the south Caspian Sea.

View Article and Find Full Text PDF

Although science has made great strides in recent years, access to fresh water remains a major challenge for humanity due to water shortage for two-thirds of the world's population. Limited access to fresh water becomes more difficult due to the lack of natural resources of water. Many of these resources are also contaminated by human activities.

View Article and Find Full Text PDF

The development of new bio-based cryogel materials with low environmental impact and various properties such as self-healing, flame-retardancy, low thermal conductivity has emerged as a cutting-edge research topic in special-purpose materials and a significant challenge. Herein, we report a simple processing methodology for preparing new mesoporous light weight thermal insulation biomass hybrid cryogels based on natural and biocompatible polymers, including marine glycosaminoglycan carrageenan moss (CM) and polymethyl methacrylate (PMMA) abbreviated as CM/PMMA under cryo conditions. The mechanical, thermal, and physicochemical characterization of the obtained hybrid cryogel was studied.

View Article and Find Full Text PDF

The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants. Accordingly, the elimination of inorganic and organic pollutants using sustainable, effective, and low-cost heterogeneous catalysts is considered as one of the most essential routes for this aim. Thus, many efforts have been devoted to the synthesis of novel compounds and improving their catalytic performance.

View Article and Find Full Text PDF

Phase change materials (PCM) have had a significant role as thermal energy transfer fluids and nanofluids and as media for thermal energy storage. Molecular dynamics (MD) simulations, can play a significant role in addressing several thermo-physical problems of PCMs at the atomic scale by providing profound insights and new information. In this paper, the reviewed research is classified into five groups: pure PCM, mixed PCM, PCM containing nanofillers, nano encapsulated PCM, and PCM in nanoporous media.

View Article and Find Full Text PDF

Graphene oxide (GO) is a promising candidate for reinforcing cement composites due to its prominent mechanical properties and good dispersibility in water. However, the severe agglomeration of GO nanosheets in the Ca ion loaded environment of a freshly mixed cement composite is the main obstacle against the mentioned goal. Recent studies, based on the SEM images, have shown that the incorporation of pozzolans can ameliorate the GO agglomeration in cement matrix.

View Article and Find Full Text PDF

Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants.

View Article and Find Full Text PDF

One of the most common phenol-formaldehyde cyclic oligomers from hydroxyalkylation reactions that exhibit supramolecular chemistry are calixarenes. These macrocyclic compounds are qualified to act as synthetic catalysts due to their specific features including being able to form host-guest complexes, having unique structural scaffolds and their relative ease of chemical modifications with a variety of functions on their upper rim and lower rim. Here, a functional magnetic nanocatalyst was designed and synthesized by using a synthetic amino-functionalized calix[4]arene.

View Article and Find Full Text PDF

This study unveils CN, a new material that serves as an excellent reinforcement to enhance the mechanical properties of aluminum using a molecular dynamics simulation method. Results show that the CN nanosheets greatly improve the mechanical properties of aluminum-based nanocomposites. With only 1.

View Article and Find Full Text PDF

Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material. A molecular dynamics study was conducted to investigate the effects of adding graphene and a boron nitride nanosheet on the thermal and structural properties of octadecane paraffin. The PCFF force field for paraffin, AIREBO potential for graphene, Tersoff potential for the boron nitride nanosheet, and Lennard-Jones potential for the van der Waals interaction between the nanoparticles and -alkanes were used.

View Article and Find Full Text PDF

Nowadays, the use of agricultural by-products, as the cheap substrate for the production of value-added products, is of high interest for the researchers and practitioners. Cellulase is a relatively expensive and a very important industrial enzyme where in this study was produced form rice by-products under solid-state fermentation. A new mutant of was used for cellulase production.

View Article and Find Full Text PDF

A smartphone-based microfluidic platform was developed for point-of-care (POC) detection using surface plasmon resonance (SPR) of gold nanoparticles (GNPs). The simultaneous colorimetric detection of trace arsenic and mercury ions (As and Hg) was performed using a new image processing application (app). To achieve this goal, a microfluidic kit was fabricated using a polydimethylsiloxane (PDMS) substrate with the configuration of two separated sensing regions for the quantitative measurement of the color changes in GNPs to blue/gray.

View Article and Find Full Text PDF

Nanostructured carbons have opened up new perspectives in fields of electromagnetic (EM) applications. The present study aims at the processing of microwave absorbing (MA) materials based on carbon aerogels (CAs) in polymethyl methacrylate (PMMA) matrix to be used in X-band frequency. CAs were synthesized by carbonization of a sol-gel derived organic gel from resorcinol and formaldehyde as starting materials.

View Article and Find Full Text PDF