428 results match your criteria: "Iran Polymer and Petrochemical Institute[Affiliation]"

In this study, a three-dimensional composite scaffold is proposed consisting of polylactic acid and spray dried glass-ceramic microparticles (SGCMs). The compositional and structural characterization showed that the obtained spray dried powder formed as glass-ceramic (GC) with a completely interconnected porosity structure. Before direct printing of scaffolds, the rheological behavior of polylactic acid (PLA) and PLA-GC (PLA matrix containing SGCMs) inks were investigated.

View Article and Find Full Text PDF

Synthesis of a supramolecular composite hydrogel, a novel class of physical and dynamic hydrogels, is reported. The hydrogel comprised gelatin (Gel), Zn-doped nano-hydroxyapatite (nZnHAp), and dexamethasone disodium phosphate (DEX). nZnHAp was functionalized with ureidopyrimidinone (UPy; quadruple hydrogen-bond-forming groups).

View Article and Find Full Text PDF

Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples.

View Article and Find Full Text PDF

1-Butyl-3-vinylimidazolium chloride was synthesized and polymerized with acrylamide to furnish an ionic liquid-containing polymer, which was then used for the formation of a composite with iron-based metal-organic framework. The resultant composite was characterized with XRD, TGA, FE-SEM, FTIR, EDS and elemental mapping analyses and its catalytic activity was appraised for ultrasonic-assisted Knoevenagel condensation. The results confirmed that the prepared composite could promote the reaction efficiently to furnish the corresponding products in high yields in very short reaction times.

View Article and Find Full Text PDF

Background: Nerve tissues are important in coordinating the motions and movements of the body. Nerve tissue repair and regeneration is a slow process that might take a long time and cost a lot of money. As a result, tissue engineering was employed to treat nerve tissue lesions.

View Article and Find Full Text PDF

Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells.

ACS Appl Bio Mater

May 2021

Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, PO Box 13185/768, Tehran 15689-37813, Iran.

Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine.

View Article and Find Full Text PDF

Eco-friendly nanocomposite aerogels were prepared as adsorbents for the removal of a model pollutant (methylene blue, MB) from water. These aerogels were comprised of hydroxyapatite (HA) nanoparticles embedded within a polymer matrix consisting of a semi-interpenetrating network of xanthan gum (XG) and polyacrylic acid (PAA). Microscopy and BET analysis showed that the aerogels formed had a nanofibrous porous microstructure with a surface area of 89 m/g.

View Article and Find Full Text PDF

Varicocele is recognized as one of the main attributable causes of male infertility which can affect spermatogenesis by various pathophysiological mechanisms. Recent studies have identified oxidative stress and reduction in antioxidant, hyperthermia, hypoxia, hormonal dysfunction, and inflammatory conditions as major factors in the pathophysiology of varicocele, all of which have known direct associations with the coronavirus disease 2019 (COVID-19) and can significantly increase the risk of detrimental COVID-19-related outcomes. Emerging data have shown an association between COVID-19 and inflammation, overproduction of cytokine, and other pathophysiological processes.

View Article and Find Full Text PDF

The aim of this study was to synthesize amphiphilic semi-IPN hydrogels based on acrylic acid (AA) and chitosan (CS) using AIBN as an initiator and N,N'methylene bis acrylamide as a crosslinking agent. The swelling behavior of the hydrogels was evaluated at a variety of pH values, temperature, the salinity of media and time, and the swelling mechanism was investigated using Fickian diffusion and Schott's 2nd-order-kinetics models. FTIR spectroscopy was used to confirm the synthesis of AA/CS hydrogel.

View Article and Find Full Text PDF

Objective: To synthesize a series of poly (acrylic acid-co-itaconic acid) (P(AA-co-IA)) copolymers with different molecular weights (MWs) through a facile water-based solution photopolymerization and to investigate the operational and mechanical properties of the experimental glass-ionomer (GI) cements made of the ionomers.

Methods: Thioglycolic acid (TGA) was used as a chain transfer agent to synthesize P(AA-co-IA) ionomers with different MWs through the solution photopolymerization. The chemical structure, MWs, and rheological properties of the copolymers were fully characterized.

View Article and Find Full Text PDF

The aim of this study was to assess the effect of application of a recently developed bio-adhesive (Impladhesive) to abutment screw threads on the removal torque value and rotational misfit at the implant-abutment junction. This in vitro study evaluated 20 implant fixtures and 20 straight abutments. Specimens were randomly divided into two groups ( = 10) with/without adhesive application.

View Article and Find Full Text PDF

Background: To improve the limitations, many modifications in the resin-modified glass ionomer (RMGI) composition have been proposed. In this study, we evaluated the effect of different concentrations of zinc oxide (ZnO) nanoparticles incorporated into RMGI cement on its physical and antimicrobial properties.

Materials And Methods: In this study, ZnO nanoparticles with 0-4 wt.

View Article and Find Full Text PDF

Poly(N-vinylcaprolactam) (PNVCL) is a suitable alternative for biomedical applications due to its biocompatibility, biodegradability, non-toxicity, and showing phase transition at the human body temperature range. The purpose of this study was to synthesize a high molecular weight PNVCL-PVAc thermo-responsive copolymer with broad mass distribution suitable for electrospun nanofiber fabrication. The chemical structure of the synthesized materials was detected by FTIR and HNMR spectroscopies.

View Article and Find Full Text PDF

Background: Solvent casting/particulate leaching is one of the most conventional methods for fabricating polymer/ceramic composite scaffolds. In this method, the solvent generally affects resulting scaffold properties, including porosity and degradation rate.

Methods: Herein, composite scaffolds of PLGA (poly(lactide-co-glycolide))/ nano-hydroxyapatite (nHA) with different percentages of nHA (25, 35, and 45 wt.

View Article and Find Full Text PDF

A novel carbon fiber microsensor (CFMS) with the capability of being inserted in the cochlear implant structure is introduced for in situ measurement of corticosteroid concentration. The microsensor structure is composed of a carbon microfiber, an Ag wire, and a Pt wire acting respectively as a working electrode, a reference electrode, and a counter electrode. In addition, a silicone septum is used for isolation purposes in place of the epoxy resin.

View Article and Find Full Text PDF

The use of carbon nanotubes as anticancer drug delivery cargo systems is a promising modality as they are able to perforate cellular membranes and transport the carried therapeutic molecules into the cellular components. Our work describes the encapsulation process of a common anticancer drug, Isatin (1H-indole-2,3-dione) as a guest molecule, in a capped single-walled carbon nanotube (SWCNT) host with chirality of (10,10). The encapsulation process was modelled, considering an aqueous solution, by a molecular dynamics (MD) simulation under a canonical NVT ensemble.

View Article and Find Full Text PDF

COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial.

View Article and Find Full Text PDF

In the present study, the occurrence and characterization of microplastics (MPs) content in the fishes of the river was studied. Therefore, six sampling stations were considered for fishing. Then, the entire stomach of fishes was investigated by visual stereomicroscope, FTIR, SEM, and EDX to analyze the content of the samples, by MPs type, shape, color, and size.

View Article and Find Full Text PDF

Magnetic thermoresponsive nanogels present a promising new approach for targeted drug delivery. In the present study, bovine serum albumin (BSA) loaded thermo-responsive magnetic semi-IPN nanogels (MTRSI-NGs) were developed. At first poly(N-vinyl caprolactam) (PNVCL) was synthesized by free radical polymerization and then MTRSI-NGs were prepared by crosslinking chitosan in presence of chitosan and FeO.

View Article and Find Full Text PDF

Natural rubber (NR) foams reinforced by a physical hybrid of nanographene/carbon nanotubes were fabricated using a two-roll mill and compression molding process. The effects of nanographene (GNS) and carbon nanotubes (CNT) were investigated on the curing behavior, foam morphology, and mechanical and thermal properties of the NR nanocomposite foams. Microscope investigations showed that the GNS/CNT hybrid fillers acted as nucleation agents and increased the cell density and decreased the cell size and wall thickness.

View Article and Find Full Text PDF

The impact of mixing method in conventional co-precipitation synthesis of layered double hydroxides (LDHs), on particle size, size distribution and drug loading capacity is reported. Synthesis of Mg (II)/Mn (III)-LDH nano-platelets was performed at constant pH using three different mixing systems, magnetic stirrer, mechanical mixer, and homogenizer at ambient temperature and a fixed Mg/Mn ratio of 3/1. The LDH characterization results showed that mechanical mixing and homogenization lead to production of very fine LDH nano-platelets (about 90-140 nm), with narrow particle size distribution.

View Article and Find Full Text PDF

Introduction: Typically, in situ forming implants utilize Poly (lactide- co- glycolide) (PLGA) as carrier and N-methyl-2-pyrrolidone (NMP) as solvent. However, it is essential to develop different carriers to release various drugs in a controlled and sustained manner with economic and safety considerations.

Objective: The present study aims to evaluate the in-vitro release of Bupivacaine HCl from in situ forming systems as post-operative local anesthesia.

View Article and Find Full Text PDF

A versatile β-cyclodextrin and N-heterocyclic palladium complex bi-functionalized iron oxide nanoadsorbent for water treatment.

Environ Sci Pollut Res Int

October 2021

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.

By industrialization, management of water resources is known as one of the most challenging issues for human society due to the presence of various contaminants such as oil, azo dyes, and micropollutants in water. The treatment of wastewaters containing more than one type of pollutants via a single-step process cannot be performed by a simple adsorption process. In this study, by combining the advantages of superparamagnetic iron oxide, carboxymethyl-β-cyclodextrin polymer, and N-heterocyclic palladium complex, a versatile bi-functionalized iron oxide nanoadsorbent [FeO@CM-β-CDP@Tet-Pd] was fabricated for the capture of toxic dyes in wastewater.

View Article and Find Full Text PDF

Protein aggregation, such as amyloid fibril formation, is molecular hallmark of many neurodegenerative disorders including Alzheimer's, Parkinson's, and Prion disease. Indole alkaloids are well-known as the compounds having the ability to inhibit protein fibrillation. In this study, we experimentally and computationally have investigated the anti-amyloid property of a derivative of a synthesized tetracyclic indole alkaloid (TCIA), possessing capable functional groups.

View Article and Find Full Text PDF

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the n order model could not accurately predict the curing performance.

View Article and Find Full Text PDF