9 results match your criteria: "International Center of Molecular Physiology of the National Academy of Sciences of Ukraine[Affiliation]"

A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions.

View Article and Find Full Text PDF

We recently unraveled a finely tuned oncogenic mechanism in which genetic and tumor microenvironment alterations act together on a crucial calcium signaling pathway. This pathway involves an interconnected equilibrium of calcium channels functioning like a binary star system in which ORAI1 homomers and ORAI1/3 heteromers are two companion stars under the influence of each other that orbit around the cancer hallmarks of apoptosis resistance and enhanced proliferation.

View Article and Find Full Text PDF

Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer.

Cancer Cell

July 2014

Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq 59656, France. Electronic address:

ORAI family channels have emerged as important players in malignant transformation, yet the way in which they reprogram cancer cells remains elusive. Here we show that the relative expression levels of ORAI proteins in prostate cancer are different from that in noncancerous tissue. By mimicking ORAI protein remodeling observed in primary tumors, we demonstrate in in vitro models that enhanced ORAI3 expression favors heteromerization with ORAI1 to form a novel channel.

View Article and Find Full Text PDF

Ca(2+) entry is indispensable part of intracellular Ca(2+) signaling, which is vital for most of cellular functions. Low voltage-activated (LVA or T-type) calcium channels belong to the family of voltage-gated calcium channels (VGCCs) which provide Ca(2+) entry in response to membrane depolarization. VGCCs are generally characterized by exceptional Ca(2+) selectivity combined with high permeation rate, thought to be determined by the presence in their selectivity filter of a versatile Ca(2+) binding site formed by four glutamate residues (EEEE motif).

View Article and Find Full Text PDF

Menthol inhibits 5-HT3 receptor-mediated currents.

J Pharmacol Exp Ther

November 2013

Laboratory of Functional Lipidomics, Departments of Pharmacology (A.A., L.A.K., B.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Molecular Neuroscience (J.C.N., N.K.), School of Systems Biology (D.V.), and Department of Computer Science (A.S.), George Mason University, Fairfax, Virginia; International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine (Y.S.); and Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, Orange, California (K.-H.S.Y.).

The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment.

View Article and Find Full Text PDF

Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni(2+)-binding site with critical histidine-191 (H191) within the extracellular IS3-IS4 domain of the most Ni(2+)-sensitive Cav3.2 T-channel isoform has been identified.

View Article and Find Full Text PDF
Article Synopsis
  • N-acylethanolamines (NAE), particularly N-stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), impact the electrical activity of cardiomyocytes in neonatal rat hearts by hyperpolarizing the resting potential and shortening action potential durations.
  • OEA is more effective than SEA in reducing currents through voltage-gated Na(+) and L-type Ca(2+) channels, while also influencing K(+) and Cl(-) conductance differently based on the cardiac myocyte type.
  • The study suggests that the inhibitory effects of SEA and OEA on excitability may possess cardioprotective properties during conditions like ischemia and infarction, as NAEs increase in such pathological
View Article and Find Full Text PDF

The transient receptor potential channel melastatin member 8 (TRPM8) is expressed in sensory neurons, where it constitutes the main receptor of environmental innocuous cold (10-25 degrees C). Among several types of G protein-coupled receptors expressed in sensory neurons, G(i)-coupled alpha 2A-adrenoreceptor (alpha 2A-AR), is known to be involved in thermoregulation; however, the underlying molecular mechanisms remain poorly understood. Here we demonstrated that stimulation of alpha 2A-AR inhibited TRPM8 in sensory neurons from rat dorsal root ganglia (DRG).

View Article and Find Full Text PDF

The studies of neuronal cell-glycosaminoglycan interactions indicate an increasing interest in the question of how heparin can mediate adhesion properties of the cell. We have found that high levels of both N-CAM concentration and heparin-binding activity were noticed in the early stages of brain formation. According to electron microscopy data, an elevation of free heparin in the substratum leads to a decrease of the N-CAM content and changing of its distribution on the membrane of cultured hippocampal neurons.

View Article and Find Full Text PDF