123 results match your criteria: "International Center for Advanced Studies[Affiliation]"

Alkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNi], which is based on a compartmental pyrazolato-bridged ligand L with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(Ni-H)] that readily releases H, oxidatively add methyl tosylate to give diamagnetic [LNi(CH)] () with (Ni···Ni) ≈ 3.7 Å.

View Article and Find Full Text PDF

Salt metathesis of dinickel(II) complex LNiBr (1; L is a dinucleating pyrazolate ligand with two β-diketiminato chelate arms) with Na(OCP) ⋅ (dioxane) yielded LNi(PCO) (2) with a P-bridging phosphaethynolate. Further reaction of 2 with benzyl isocyanide or with an N-heterocyclic carbene (NHC) triggered decarbonylation and gave LNi(PCN-CHPh) (3) and LNiP(NHC) (4) with P-bridging cyanophosphide and NHC-phosphinidenide, respectively. Electronic structure analysis indicated a μ-η : η binding mode of the PCO anion between the two Ni ions in 2, which is even more pronounced for the [PCN(-CHPh)] anion in 3.

View Article and Find Full Text PDF

Studying dynamics of the dissociative adsorption and recombinative desorption of hydrogen on copper surfaces has shaped our atomic-scale understanding of surface chemistry, yet experimentally determining the thermal rates for these processes, which dictate the outcome of catalytic reactions, has been impossible so far. In this work, we determine the thermal rate constants for dissociative adsorption and recombinative desorption of hydrogen on Cu(111) between 200 and 1000 K using data from reaction dynamics experiments. Contrary to current understanding, our findings demonstrate the predominant role of quantum tunneling, even at temperatures as high as 400 K.

View Article and Find Full Text PDF

Atomic-scale structures that account for the acceleration of reactivity by heterogeneous catalysts often form only under reaction conditions of high temperatures and pressures, making them impossible to observe with low-temperature, ultra-high-vacuum methods. We present velocity-resolved kinetics measurements for catalytic hydrogen oxidation on palladium over a wide range of surface concentrations and at high temperatures. The rates exhibit a complex dependence on oxygen coverage and step density, which can be quantitatively explained by a density functional and transition-state theory-based kinetic model involving a cooperatively stabilized configuration of at least three oxygen atoms at steps.

View Article and Find Full Text PDF

Controlling the dynamics of topologically protected spin objects by all-optical means promises enormous potential for future spintronic applications. Excitation of bubbles and skyrmions in ferrimagnetic [Fe(0.35  nm)/Gd(0.

View Article and Find Full Text PDF

Next-to-Next-to-Leading Order Global Analysis of Polarized Parton Distribution Functions.

Phys Rev Lett

October 2024

Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1 (1428) Buenos Aires, Argentina.

We present a next-to-next-to-leading order (NNLO) global QCD analysis of the proton's helicity parton distribution functions, the first of its kind. To obtain the distributions, we use data for longitudinal spin asymmetries in inclusive and semi-inclusive lepton-nucleon scattering as well as in weak-boson and hadron or jet production in proton-proton scattering. We analyze the data using QCD perturbation theory at NNLO accuracy, employing approximations provided by the threshold resummation formalism in cases where full NNLO results for partonic hard-scattering functions are not readily available.

View Article and Find Full Text PDF

Hydrogen bonds involving the oxygen atoms of intermediates that result from copper-mediated O activation play a key role for controlling the reactivity of Cu/O active sites in metalloenzymes and synthetic model complexes. However, structural insight into H-bonding in such transient species as well as thermodynamic information about proton transfer to or from the O-derived ligands is scarce. Here we present a detailed study of the reversible interconversion of a μ-peroxodicopper(II) complex ([1]) and its μ-hydroperoxo congener ([2]) via (de)protonation, including the isolation and structural characterization of several H-bond donor (HBD) adducts of [1] and the determination of binding constants.

View Article and Find Full Text PDF

C=C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene.

JACS Au

September 2024

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany.

Photolysis of a platinum(II) azide complex in the presence of styrenes enables C=C double bond cleavage upon dissociative olefin imination to aldimido (Pt-N=CHPh) and formimido (Pt-N=CH) complexes as the main products. Spectroscopic and quantum chemical examinations support a mechanism that commences with the decay of the metallonitrene photoproduct (Pt-N) via bimolecular coupling and nitrogen loss as N. The resulting platinum(I) complex initiates a radical chain mechanism via a dinuclear radical-bridged species (Pt-CHCHPhN-Pt) as a direct precursor to C-C scission.

View Article and Find Full Text PDF

Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required.

View Article and Find Full Text PDF
Article Synopsis
  • A series of nickel(II) dihydride complexes were synthesized, using a bis(pyrazolate) ligand, leading to various compounds including μ-sulfido and μ-hydrosulfido complexes.
  • The μ-sulfido complex can be oxidized to form a bridging S-radical, characterized through various spectroscopic methods, showcasing its unique properties.
  • The study highlights the importance of these complexes in understanding proton-coupled electron transfer reactions, relevant to biological systems and catalysis.
View Article and Find Full Text PDF

Triplet carbenes with transition-metal substituents.

Nat Chem

November 2024

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion (ICASEC), Universität Göttingen, Göttingen, Germany.

The extraordinary advances in carbene (R-C-R) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M-C-R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C-R).

View Article and Find Full Text PDF

Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N-to-NH reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N splitting ([MoCl], , H = 2,6-bis((di--butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N activation.

View Article and Find Full Text PDF

Nonadiabatic interaction of adsorbate nuclear motion with the continuum of electronic states is known to affect the dynamics of chemical reactions at metal surfaces. A large body of work has probed the fundamental mechanisms of such interactions for atomic and diatomic molecules at surfaces. In polyatomic molecules, the possibility of mode-specific damping of vibrational motion due to the effects of electronic friction raises the question of whether such interactions could profoundly affect the outcome of chemistry at surfaces by selectively removing energy from a particular intramolecular adsorbate mode.

View Article and Find Full Text PDF

Uncovering the role of reaction intermediates is crucial to developing an understanding of heterogeneous catalysis because catalytic reactions often involve complex networks of elementary steps. Identifying the reaction intermediates is often difficult because their short lifetimes and low concentrations make it difficult to observe them with surface sensitive spectroscopic techniques. In this paper we report a different approach to identify intermediates for the formic acid decomposition reaction on Pd(111) and Pd(332) based on accurate measurements of isotopologue specific thermal reaction rates.

View Article and Find Full Text PDF

The Born-Oppenheimer approximation (BOA), which serves as the basis for our understanding of chemical bonding, reactivity and dynamics, is routinely violated for vibrationally inelastic scattering of molecules at metal surfaces. The title-field therefore represents a fascinating challenge to our conventional wisdom calling for new concepts that involve explicit electron dynamics occurring in concert with nuclear motion. Here, we review progress made in this field over the last decade, which has witnessed dramatic advances in experimental methods, thereby providing a much more extensive set of diverse observations than has ever before been available.

View Article and Find Full Text PDF

Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts.

View Article and Find Full Text PDF

Probing the tunable multi-cone band structure in Bernal bilayer graphene.

Nat Commun

April 2024

1st Physical Institute, Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany.

Bernal bilayer graphene (BLG) offers a highly flexible platform for tuning the band structure, featuring two distinct regimes. One is a tunable band gap induced by large displacement fields. Another is a gapless metallic band occurring at low fields, featuring rich fine structure consisting of four linearly dispersing Dirac cones and van Hove singularities.

View Article and Find Full Text PDF

We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)(bpy)(bpy)] (, bpy = 2,2'-bipyridine, bpy = [1,2]dithiino[3,4-:6,5-']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (bpy)-ligand-centered excited state (LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (MLCT) state at higher energy, with relative yields of 90% and 10%, respectively.

View Article and Find Full Text PDF

Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible.

View Article and Find Full Text PDF

A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst.

Nature

February 2024

Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain.

Observationally, kilonovae are astrophysical transients powered by the radioactive decay of nuclei heavier than iron, thought to be synthesized in the merger of two compact objects. Over the first few days, the kilonova evolution is dominated by a large number of radioactive isotopes contributing to the heating rate. On timescales of weeks to months, its behaviour is predicted to differ depending on the ejecta composition and the merger remnant.

View Article and Find Full Text PDF

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state.

View Article and Find Full Text PDF

From nuclear track characterization to machine learning based image classification in neutron autoradiography for boron neutron capture therapy.

PLoS One

December 2023

Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.

Knowledge of the 10B microdistribution is of great relevance in BNCT studies. Since 10B concentration assesment through neutron autoradiography depends on the correct quantification of tracks in a nuclear track detector, image acquisition and processing conditions should be controlled and verified, in order to obtain accurate results to be applied in the frame of BNCT. With this aim, an image verification process was proposed, based on parameters extracted from the quantified nuclear tracks.

View Article and Find Full Text PDF

Reconstruction of Angstrom resolution exit-waves by the application of drift-corrected phase-shifting off-axis electron holography.

Ultramicroscopy

February 2024

Institute of Materials Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077, Goettingen, Germany; International Center for Advanced Studies of Energy Conversion (ICASEC), University of Goettingen, D-37077, Goettingen, Germany. Electronic address:

Phase-shifting electron holography is an excellent method to reveal electron wave phase information with very high phase sensitivity over a large range of spatial frequencies. It circumvents the limiting trade-off between fringe spacing and visibility of standard off-axis holography. Previous implementations have been limited by the independent drift of biprism and sample.

View Article and Find Full Text PDF

Dibenzannulated -acenoacenes from anthanthrene derivatives.

Chem Sci

September 2023

Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA) 1045 Ave de la Médecine, Université Laval Québec G1V 0A6 Canada

A series of dibenzannulated phenyl-annulated [4,2]-acenoacenes have been synthesized in three straightforward steps from 4,10-dibromoanthanthrone (vat orange 3). The phenyl bisannulation of [4,2]-acenoacene provides extra stability by increasing the overall aromatic character of the molecules, and allows for a 45-80% increase of the molar extinction coefficient () compared to their [5,2]-acenoacene isomers. Depending on the substituents attached to the π-conjugated core, some derivatives exhibit strong aggregation in the solid state with association constant () up to 255 M, resulting in a significant broadening of the absorption spectrum and a substantial decrease of the bandgap value (more than 0.

View Article and Find Full Text PDF