17 results match your criteria: "International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center[Affiliation]"

Introduction: A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in HIV-1 infected infants.

Methods: We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from longitudinal samples (3 time points) collected from a rare pair of antiretroviralnaïve, HIV-1 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma neutralizing activity against HIV-1.

View Article and Find Full Text PDF

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Soluble recombinant native-like (NL) envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design, designated BG505 SOSIP.664, incorporates an intersubunit disulfide bond (SOS) to covalently link the gp120 and gp41 ectodomain (gp41) subunits and a point substitution, I559P (IP), to further stabilize the gp41 components.

View Article and Find Full Text PDF

We describe the properties of BG505 SOSIP.664 HIV-1 envelope glycoprotein trimers produced under current Good Manufacturing Practice (cGMP) conditions. These proteins are the first of a new generation of native-like trimers that are the basis for many structure-guided immunogen development programs aimed at devising how to induce broadly neutralizing antibodies (bNAbs) to HIV-1 by vaccination.

View Article and Find Full Text PDF

The development of an effective AIDS vaccine has been challenging because of viral genetic diversity and the difficulty of generating broadly neutralizing antibodies (bnAbs). We engineered trispecific antibodies (Abs) that allow a single molecule to interact with three independent HIV-1 envelope determinants: the CD4 binding site, the membrane-proximal external region (MPER), and the V1V2 glycan site. Trispecific Abs exhibited higher potency and breadth than any previously described single bnAb, showed pharmacokinetics similar to those of human bnAbs, and conferred complete immunity against a mixture of simian-human immunodeficiency viruses (SHIVs) in nonhuman primates, in contrast to single bnAbs.

View Article and Find Full Text PDF

The 2017 Keystone Symposium on HIV Vaccines.

Hum Vaccin Immunother

October 2017

a Department of Integrative Structural and Computational Biology , Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla , CA , USA.

View Article and Find Full Text PDF

Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target.

View Article and Find Full Text PDF

We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period.

View Article and Find Full Text PDF

Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice.

Science

September 2016

Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital (MGH), MIT, and Harvard, Cambridge, MA 02129, USA.

A major obstacle to a broadly neutralizing antibody (bnAb)-based HIV vaccine is the activation of appropriate B cell precursors. Germline-targeting immunogens must be capable of priming rare bnAb precursors in the physiological setting. We tested the ability of the VRC01-class bnAb germline-targeting immunogen eOD-GT8 60mer (60-subunit self-assembling nanoparticle) to activate appropriate precursors in mice transgenic for human immunoglobulin (Ig) loci.

View Article and Find Full Text PDF

Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein.

Cell Rep

March 2016

Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Electronic address:

The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine.

View Article and Find Full Text PDF

Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy.

Structure

October 2015

Department of Integrative Structural and Computational Biology, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address:

Secretory and membrane proteins from mammalian cells undergo post-translational modifications, including N-linked glycosylation, which can result in a large number of possible glycoforms. This sample heterogeneity can be problematic for structural studies, particularly X-ray crystallography. Thus, crystal structures of heavily glycosylated proteins such as the HIV-1 Env viral spike protein have been determined by removing the majority of glycans.

View Article and Find Full Text PDF

Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens.

Proc Natl Acad Sci U S A

September 2015

Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative ( IAVI) Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037

A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation.

View Article and Find Full Text PDF

A major goal of HIV-1 vaccine research is the design of immunogens capable of inducing broadly neutralizing antibodies (bnAbs) that bind to the viral envelope glycoprotein (Env). Poor binding of Env to unmutated precursors of bnAbs, including those of the VRC01 class, appears to be a major problem for bnAb induction. We engineered an immunogen that binds to VRC01-class bnAb precursors and immunized knock-in mice expressing germline-reverted VRC01 heavy chains.

View Article and Find Full Text PDF

Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera).

View Article and Find Full Text PDF

Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface.

Nature

November 2014

Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope.

View Article and Find Full Text PDF

A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

Science

November 2011

Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.

The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.

View Article and Find Full Text PDF