13 results match your criteria: "Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT)[Affiliation]"

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

Development of Soft Wrinkled Micropatterns on the Surface of 3D-Printed Hydrogel-Based Scaffolds via High-Resolution Digital Light Processing.

Gels

November 2024

Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.

The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns.

View Article and Find Full Text PDF

Aqueous leaf extracts of are widely used because of their diuretic, natriuretic, antiurolithiatic, anti-inflammatory and antihypertensive properties. The major component of the extract is the flavonoid 4',5-dihydroxy-6,7-methylenedioxyflavonol-3--α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside, but it is not known if this compound is responsible for the biological activity. The objective of this work is to develop effective tools that allow predicting the possible activity of the flavonoid aglycone as an inhibitor of metalloproteases that regulate renal fluid excretion.

View Article and Find Full Text PDF

Glass Surface Nanostructuring by Soft Lithography and Chemical Etching.

Nanomaterials (Basel)

October 2024

Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile.

Due to its high durability and transparency, soda lime glass holds a huge potential for several applications such as photovoltaics, optical instrumentation and biomedical devices, among others. The different technologies request specific properties, which can be enhanced through the modification of the surface morphology with a nanopattern. Here, we report a simple method to nanostructure a glass surface with soft lithography and wet-chemical etching in potassium hydroxide (KOH) solutions.

View Article and Find Full Text PDF

Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic.

Colloids Surf B Biointerfaces

January 2025

Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile.

Dumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles' synthesis.

View Article and Find Full Text PDF

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

J Mol Model

November 2024

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina.

Context: This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity.

View Article and Find Full Text PDF

The primary objective of this study was to evaluate the persistence and elimination of Contaminants of Emerging Concern (CECs) in municipal wastewater treatment plants (MWWTPs) and their presence in the Mapocho River within the metropolitan area of Santiago, Chile. The use of advanced analytical techniques, based on liquid chromatography coupled to both low and high-resolution mass spectrometry, allowed a comprehensive overview on the presence of CECs in samples. Additionally, a preliminary assessment of the microbiological aspects aimed to determine the presence of indicator microorganisms of fecal contamination, such as Escherichia coli and total coliforms was conducted.

View Article and Find Full Text PDF

Exfoliated graphite (ExG) embedded in a polymeric matrix represents an accessible, cost-effective, and sustainable method for generating nanosized graphite-based polymer composites with multifunctional properties. This review article analyzes diverse methods currently used to exfoliate graphite into graphite nanoplatelets, few-layer graphene, and polymer-assisted graphene. It also explores engineered methods for small-scale pilot production of polymer nanocomposites.

View Article and Find Full Text PDF

Context: This study investigates the ethylene insertion reaction mechanism for polymerization catalysis, aiming to discern differences between Ni-α-imine ketone-type catalyst and their SiO-supported counterpart. The reaction force analysis unveils a more intricate mechanism with SiO support, shedding light on unexplored factors and elucidating the observed lower catalytic activity. Furthermore, reactivity indexes suggest earlier ethylene activation in the supported catalyst, potentially enhancing overall selectivity.

View Article and Find Full Text PDF

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level.

View Article and Find Full Text PDF

Zinc oxide nanoflakes supported copper oxide nanosheets as a bifunctional electrocatalyst for OER and HER in an alkaline medium.

Environ Res

July 2024

School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India. Electronic address:

Bifunctional electrocatalysts are the attractive research in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in the overall water-splitting reactions. The design and development of the cost-effective OER/HER bifunctional electrocatalysts with superior catalytic activity are still remaining as the big challenges. Herein, we have developed the CuO-ZnO nanocomposite as a bifunctional OER/HER electrocatalyst via simple chemical precipitation method.

View Article and Find Full Text PDF

In this study, a methodology is proposed, combining ligand- and structure-based virtual screening tools, for the identification of phosphorus-containing compounds as inhibitors of zinc metalloproteases. First, we use Dragon molecular descriptors to develop a Linear Discriminant Analysis classification model, which is widely validated according to the OECD principles. This model is simple, robust, stable and has good discriminating power.

View Article and Find Full Text PDF

Interaction mechanism of water-soluble inorganic arsenic onto pristine nanoplastics.

Chemosphere

February 2024

Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, 8940577, Chile. Electronic address:

Nanoplastics (NPLs) persist in aquatic habitats, leading to incremental research on their interaction mechanisms with metalloids in the environment. In this regard, it is known that plastic debris can reduce the number of water-soluble arsenicals in contaminated environments. Here, the arsenic interaction mechanism with pure NPLs, such as polyethylene terephthalate (PET), aliphatic polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), and polystyrene (PS) is evaluated using computational chemistry tools.

View Article and Find Full Text PDF