345 results match your criteria: "Institute on Membrane Technology[Affiliation]"

The alarming rise in environmental pollution, depletion of global resources, and increasing health consciousness have placed significant pressure on the development of eco-friendly, sustainable materials. Consequently, green, environmentally friendly materials made from biobased and/or biodegradable sources are gaining recognition and political support as sustainable alternatives to petroleum-based, non-biodegradable materials. Bio-based packaging materials, in particular, are widely used across all industrial sectors, with a growing demand for solutions that preserve food quality and extend shelf life.

View Article and Find Full Text PDF

This study focuses on the use of three isostructural NO donor ligands, specifically known to form complexes with copper ions, to chelate Cu(II) from aqueous solutions. The corresponding Cu(II) complexes feature a dinuclear copper core mimicking the active site of natural superoxide dismutase (SOD) enzymes while also creating a coordination environment favorable for catalase (CAT) activity, being thus appealing as catalytic antioxidant systems. Given the critical role of copper dysregulation in the pathophysiology of Alzheimer's disease (AD), these complexes may help mitigate the harmful effects of free Cu(II) ions: the goal is to transform copper's reactive oxygen species (ROS)-generating properties into beneficial ROS-scavenging action.

View Article and Find Full Text PDF

High-performance and sustainable membranes for water desalination applications are crucial to address the growing global demand for clean water. Concurrently, electrospinning has emerged as a versatile manufacturing method for fabricating nanofibrous membranes for membrane distillation. However, widespread adoption of electrospinning for processing water-insoluble polymers, such as fluoropolymers, is hindered by the reliance on hazardous organic solvents during production.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates chitosan-based membranes mixed with eco-friendly deep eutectic solvents (DESs) to improve the separation of methanol and methyl-butyl ether via pervaporation.
  • - Results showed that adding DESs boosted the membranes' selective permeability for methanol by up to three times compared to regular chitosan membranes, with performance influenced by feed temperature.
  • - Crosslinking the membranes with glutaraldehyde enhanced their selectivity, highlighting the potential of DESs to improve biopolymer membranes for efficient and environmentally friendly separations.
View Article and Find Full Text PDF

Assessing potentially toxic elements (PTEs) content in asbestos and related groundwater: A review of the levels detected.

Sci Total Environ

December 2024

Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, P. Bucci street, cubo 15b, 87036 Arcavacata di Rende, CS, Italy.

This article provides a review of published literature on the concentration levels of potentially toxic elements (PTEs) in asbestos minerals like chrysotile, actinolite, amosite (asbestiform grunerite), anthophyllite, crocidolite (asbestiform riebeckite) and tremolite and their potential to release PTEs into groundwaters worldwide. A large number of PTEs, such as Fe, Cr, Ni, Mn, Co and Zn, may be hosted by asbestos minerals, and their release in the lung environment can cause different health problems as well as their intake via drinking water. The review highlights that amosite is the phase with the highest PTEs content, followed by crocidolite, actinolite, anthophyllite, tremolite and chrysotile.

View Article and Find Full Text PDF

Li-S batteries are promising alternatives due to their proven increased gravimetric capacity compared to Li-ion batteries. However, their development is hindered by many technical issues, one of the most challenging being the dissolution and shuttle of polysulfide species, which causes irreversible loss of cathode material leading to rapid capacity fading. Among the possible strategies to mitigate this effect, the choice of suitable solvents is easy to implement and has large room for improvement.

View Article and Find Full Text PDF

This study introduces a novel plasmonic nanocomposite platform, where gold nanoparticles (AuNPs) are synthesized in situ within a polydimethylsiloxane (PDMS) film. The innovative fabrication process leverages ethyl acetate swelling to achieve a uniform distribution of AuNPs, eliminating the need for additional reagents. The resulting nanocomposite film exhibits exceptional photothermal conversion capabilities, efficiently converting absorbed light into heat and rapidly reaching high temperatures.

View Article and Find Full Text PDF

Triple Enzymatic Cascade Reaction to Produce Hydroxytyrosol Acetate from Olive Leaves Using Integrated Membrane Bioreactors.

ChemSusChem

October 2024

Institute on Membrane Technology, National Research Council, CNR-ITM, University of Calabria, via P. Bucci, 17/C, 87036, Rende (Cosenza), Italy.

An integrated system of three membrane bioreactors (MBRs) has been developed that cascades three different enzymatic reactions. The integrated system was applied to produce hydroxytyrosol acetate from oleuropein extracted from olive leaves. Different reactor configurations for each reaction were tested and individually optimized to select the MBR to ensure high conversion and continuous production of oleuropein aglycone (OA), hydroxytyrosol (HY) and hydroxytyrosol acetate (HA).

View Article and Find Full Text PDF

Although the multidisciplinary area of liver tissue engineering is in continuous progress, research in this field is still focused on developing an ideal liver tissue template. Innovative strategies are required to improve membrane stability and bioactivity. In our study, sustainable biomimetic membranes were developed by blending methacrylated chitosan (CSMA) with jellyfish collagen (jCol) for liver tissue engineering applications.

View Article and Find Full Text PDF

It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL).

View Article and Find Full Text PDF

Heavy metal ions are a common source of water pollution. In this study, two novel membranes with biobased metal-organic frameworks (BioMOFs) embedded in a polyacrylonitrile matrix with tailored porosity were prepared via nonsolvent induced phase separation methods and designed to efficiently adsorb heavy metal ions from oligomineral water. Under optimized preparation conditions, stable membranes with high MOF loading up to 50 wt % and a cocontinuous sponge-like morphology and a high water permeability of 50-60 L m h bar were obtained.

View Article and Find Full Text PDF

Among a plethora of mixtures, the methane (CH) and hydrogen (H) mixture has garnered considerable attention for multiple reasons, especially in the framework of energy production and industrial processes as well as ecological considerations. Despite the fact that the CH/H mixture performs many critical tasks, the presence of other gases, such as carbon dioxide, sulfur compounds like HS, and water vapor, leads to many undesirable consequences. Thus purification of this mixture from these gases assumes considerable relevance.

View Article and Find Full Text PDF

During the production and laying phases of hot-mixing asphalt (HMA), various volatile organic compounds (VOCs) and noxious gases such as HS are released into the atmosphere. These emissions are a serious environmental problem, a risk to human health, and expose workers and residents to unfriendly odours. The aim of this study was the development of a fast and sensitive analytical method to detect the HS emitted from hot bituminous binder that is generally used in the various stages of asphalt production, processing, handling and during road construction.

View Article and Find Full Text PDF

The condensation of water vapor plays a crucial role in various applications, including combating water scarcity. In this study, by employing molecular dynamics simulations, we delved into the impact of graphene coatings on water vapor condensation on copper surfaces. Unique to this work was the exploration of various levels of graphene coverage and distribution, a facet largely unexplored in prior investigations.

View Article and Find Full Text PDF

Conductive polymers, such as polyaniline (PANI), have interesting applications, ranging from flexible electronics, energy storage devices, sensors, antistatic or anticorrosion coatings, etc. However, the full exploitation of conductive polymers still poses a challenge due to their low processability. The use of compatible stabilizers to obtain dispersible and stable colloids is among the possible solutions to overcome such drawbacks.

View Article and Find Full Text PDF

Optimization of Membrane Condenser Process with PTFE Hollow Fiber Membrane.

Membranes (Basel)

June 2024

Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China.

A membrane condenser (MC) is a novel membrane separation technology that utilizes the hydrophobic nature of porous membranes to capture water vapor from humid gas. Factors such as temperature, pressure, flow rate, and gas composition entering the membrane condenser play a crucial role in water recovery efficiency. This study utilized hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membranes to create multiple identical membrane modules.

View Article and Find Full Text PDF

Water pollutants such as heavy metal ions, pesticides, and dyes pose a worldwide issue. Their presence in water resources interferes with the normal growth mechanisms of living beings and causes long or short-term diseases. For this reason, research continuously tends to develop innovative, selective, and efficient processes or technologies to detect and remove pollutants from water.

View Article and Find Full Text PDF

Editorial for the Special Issue "Preparation and Application of Advanced Functional Membranes".

Membranes (Basel)

April 2024

Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

Membrane science is a discipline that cuts across almost all fields of research and experimentation [...

View Article and Find Full Text PDF

Unraveling the Interactions between Lithium and Twisted Graphene.

Materials (Basel)

April 2024

Surface Nanoscience Group, Department of Physics, University of Calabria, 87036 Rende, Italy.

Graphene is undoubtedly the carbon allotrope that has attracted the attention of a myriad of researchers in the last decades more than any other. The interaction of external or intercalated Li and Li with graphene layers has been the subject of particular attention for its importance in the applications of graphene layers in Lithium Batteries (LiBs). It is well known that lithium atoms and Li can be found inside and/or outside the double layer of graphene, and the graphene layers are often twisted around its parallel plane to obtain twisted graphene with tuneable properties.

View Article and Find Full Text PDF

Extracellular vesicles selective capture by peptide-functionalized hollow fiber membranes.

J Colloid Interface Sci

August 2024

Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, via P. Bucci, cubo 17/C, I-87036 Rende (CS), Italy. Electronic address:

Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells.

View Article and Find Full Text PDF

Insights into the preparation of zein nanoparticles by continuous membrane nanoprecipitation.

Int J Biol Macromol

April 2024

National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende, CS, Italy. Electronic address:

Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs.

View Article and Find Full Text PDF
Article Synopsis
  • - Polyimides are promising materials for gas separation membranes due to their selective permeability and ability to operate under various temperatures and pressures, and current research is focusing on enhancing their performance through various fillers.
  • - Researchers tested butylcalix[n]arene macrocycles (PTBCs) with different sizes as fillers in a thermoplastic polyimide to create nanocomposite membranes, using concentrations from 1-9 wt%.
  • - The study involved preparation of films through a pre-mixing and solvent casting process, followed by characterization of their properties and gas transport, showing that the addition of these nanoporous fillers improved molecular transport efficiency.
View Article and Find Full Text PDF

Ethylene-chlorotrifluoroethylene (ECTFE) was first commercialized by DuPont in 1974. Its unique chemical structure gives it high heat resistance, mechanical strength, and corrosion resistance. But also due to these properties, it is difficult to prepare a membrane from it by the nonsolvent-induced phase separation (NIPS) method.

View Article and Find Full Text PDF

A combination of straw filtration and nanofiltration was investigated for the first time as a sustainable approach aimed at valorizing olive mill wastewaters (OMWs) within a circular economy strategy. Ground straw filters with different granulometry (120, 250 and 500 μm) were tested in the first step to clarify the raw wastewater. The 500 μm filter offered the best performance due to a lower exposed surface of the filtering fibers and a shorter filtering time, allowing us to reduce about 70% of the chemical oxygen demand (COD) of the raw wastewater.

View Article and Find Full Text PDF

Cyclopeptides hold significant relevance in various fields of science and medicine, due to their unique structural properties and diverse biological activities. Cyclic peptides, characterized by intrinsically higher conformational order, exhibit remarkable stability and resistance to proteolytic degradation, making them attractive candidates for developing targeted drug delivery systems. The aim of this work is to elucidate the unique coordination properties of the multi-His cyclic peptide with c(HDHKHPHHKHHP) sequence (HDCP - heterodomain cyclopeptide).

View Article and Find Full Text PDF