80 results match your criteria: "Institute of gene biology RAS[Affiliation]"

The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling.

View Article and Find Full Text PDF

In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals.

View Article and Find Full Text PDF

Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects.

Acta Naturae

January 2021

Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia.

Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.

View Article and Find Full Text PDF

Introduction: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurological syndrome caused by pathogenic variants in the C19orf12 and is characterized by iron deposition in the basal ganglia and substantia nigra. Only a limited number of cohort studies were published to date and the prevalence of MPAN remains uncertain.

Methods: Recruited subjects with MPAN in Russia were diagnosed by whole-exome sequencing or Sanger sequencing of the C19orf12 gene.

View Article and Find Full Text PDF

Studies on the mechanisms of activation of cytotoxic lymphocyte subpopulations are an important research direction in modern immunology. This study provides a detailed analysis of the effect of Tag7 (PGRP-S, PGLYRP1) on the development of lymphocyte subpopulations cytotoxic against MHC-negative tumor cells in a pool of peripheral blood mononuclear cells (PBMCs). The results show that Tag7 can bind to the TREM-1 receptor on the surfaces of monocytes, thereby triggering the expression of mRNA TNFα and IFNγ.

View Article and Find Full Text PDF

Various pathological processes are known to be associated with the production of IgG autoantibodies, which have high affinity for self-antigens and often cause tissue injury and the development of autoimmune diseases. However, the mechanism of their cytotoxic activity is not clearly understood yet. Here, we have shown that the action of these autoantibodies on cells expressing TNFR1 (the cell surface receptor for TNFα) can cause both caspase-dependent apoptosis and necroptosis of these cells, with suppression of apoptosis resulting in switching to RIP1-dependent necroptosis.

View Article and Find Full Text PDF

Investigation of interactions between a pro-inflammatory cytokine tumor necrosis factor (TNFα) and its receptor is required for the development of new treatments for autoimmune diseases associated with the adverse effects of TNFα. Earlier, we demonstrated that the innate immunity protein Tag7 (PGRP-S, PGLYRP1) can interact with the TNFα receptor, TNFR1, and block the transduction of apoptotic signals through this receptor. A complex formed between the Tag7 protein and the major heat shock protein Hsp70 can activate TNFR1 receptor and induce tumor cell death via either apoptotic or necroptotic pathway.

View Article and Find Full Text PDF

Nucleic acid aptamers have been proven to be a useful tool in many applications. Particularly, aptamers to epidermal growth factor receptor (EGFR) have been successfully used for the recognition of EGFR-expressing cells, the inhibition of EGFR-dependent pathways, and targeted drug delivery into EGFR-positive cells. Several aptamers are able to discriminate wild-type EGFR from its mutant form, EGFRvIII.

View Article and Find Full Text PDF

Histone Chaperone FACT and Curaxins: Effects on Genome Structure and Function.

J Cancer Metastasis Treat

November 2019

Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.

The histone chaperone FACT plays important roles in essentially every chromatin-associated process and is an important indirect target of the curaxin class of anti-cancer drugs. Curaxins are aromatiс compounds that intercalate into DNA and can trap FACT in bulk chromatin, thus interfering with its distribution and its functions in cancer cells. Recent studies have provided mechanistic insight into how FACT and curaxins cooperate to promote unfolding of nucleosomes and chromatin fibers, resulting in genome-wide disruption of contact chromatin domain boundaries, perturbation of higher order chromatin organization, and global disregulation of gene expression.

View Article and Find Full Text PDF

encodes one of the two fly CPEB proteins. These widely conserved proteins bind to the 3'UTRs of target messenger RNAs (mRNAs) and activate or repress their translation. We show here that a positive autoregulatory loop driven by the gene propels the specification of oocyte identity in egg chambers.

View Article and Find Full Text PDF

The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells.

View Article and Find Full Text PDF

Recently we characterized a class of anti-cancer agents (curaxins) that disturbs DNA/histone interactions within nucleosomes. Here, using a combination of genomic and in vitro approaches, we demonstrate that curaxins strongly affect spatial genome organization and compromise enhancer-promoter communication, which is necessary for the expression of several oncogenes, including MYC. We further show that curaxins selectively inhibit enhancer-regulated transcription of chromatinized templates in cell-free conditions.

View Article and Find Full Text PDF

We describe Surface Oligopeptide knock-in for Rapid Target Selection (SORTS), a novel method to select mammalian cells with precise genome modifications that does not rely on cell cloning. SORTS is designed to disrupt the target gene with an expression cassette encoding an epitope tag embedded into human glycophosphatidylinositol (GPI)-anchored protein CD52. The cassette is very short, usually less than 250 nucleotides, which simplifies donor DNA construction and facilitates transgene integration into the target locus.

View Article and Find Full Text PDF

In recent decades, novel microscopic methods commonly referred to as super- resolution microscopy have been developed. These methods enable the visualization of a cell with a resolution of up to 10 nm. The application of these methods is of great interest in studying the structure and function of the cell nucleus.

View Article and Find Full Text PDF

Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases.

View Article and Find Full Text PDF

The innate immunity protein Tag7 (PGRP-S, PGLYRP1) is involved in antimicrobial and antitumor defense. As shown in our previous studies, Tag7 specifically interacts with the major heat shock protein Hsp70 to form a stable Tag7-Hsp70 complex with cytotoxic activity against tumor cells. A stable complex of Tag7 with the calcium-binding protein Mts1 (S100A4) stimulates migration of lymphocytes.

View Article and Find Full Text PDF

Active DNA demethylation performed by ten-eleven translocation (TET) enzymes produces 5-hydroxymethylcytosines, 5-formylcytosines, and 5-carboxylcytosines. Recent observations suggest that 5-hydroxymethylcytosine is a stable epigenetic mark rather than merely an intermediate of DNA demethylation. However, the clear functional role of this new epigenetic player is elusive.

View Article and Find Full Text PDF

An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4 CD25 lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8 lymphocytes.

View Article and Find Full Text PDF

Russian legislation lags behind the rapid developments witnessed in genetic engineering. Only a scientifically based and well-substantiated policy on the place of organisms that are created with the use of genetic engineering technologies and an assessment of the risks associated with them could guarantee that the breakthroughs achieved in modern genetic engineering technologies are effectively put to use in the real economy. A lack of demand for such breakthroughs in the practical field will lead to stagnation in scientific research and to a loss of expertise.

View Article and Find Full Text PDF

Tag7 (PGRP-S or PGLYRP1), while possessing an antimicrobial activity, also exhibits an antitumor effect when in complex with the major heat shock protein Hsp70. The cytotoxic Tag7-Hsp70 complex is secreted by lymphocytes after interaction with the HLA-negative tumors. Previously, we have shown that IL-2 induces formation of the CD4 and CD8 cytotoxic subpopulations of human lymphocytes, which kill tumor cells through the FasL-Fas interaction.

View Article and Find Full Text PDF

Previously, we showed that CD206-targeted liposomal delivery of co-encapsulated immunodominant myelin basic protein (MBP) sequences MBP, MBP and MBP (Xemys) suppressed experimental autoimmune encephalomyelitis in dark Agouti rats. The objective of this study was to assess the safety of Xemys in the treatment of patients with relapsing-remitting multiple sclerosis (MS) and secondary progressive MS, who failed to achieve a sustained response to first-line disease-modifying therapies. In this phase I, open-label, dose-escalating, proof-of-concept study, 20 patients with relapsing-remitting or secondary progressive MS received weekly subcutaneously injections with ascending doses of Xemys up to a total dose of 2.

View Article and Find Full Text PDF

To date, dozens of stress-induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence-like states that can be induced by low molecular weight compounds.

View Article and Find Full Text PDF

3D genomics imposes evolution of the domain model of eukaryotic genome organization.

Chromosoma

February 2017

LIA1066 "French-Russian Cancer Research Laboratory", Villejuif, France.

The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.

View Article and Find Full Text PDF

Recent data indicate that eukaryotic chromosomes are organized into Topologically Associating Domains (TADs); however, the mechanisms underlying TAD formation remain obscure. Based on the results of Hi-C analysis performed on 4 Drosophila melanogaster cell lines, we have proposed that specific properties of nucleosomes in active and repressed chromatin play a key role in the formation of TADs. Our computer simulations showed that the ability of "inactive" nucleosomes to stick to each other and the lack of such ability in "active" nucleosomes is sufficient for spatial segregation of these types of chromatin, which is revealed in the Hi-C analysis as TAD/inter-TAD partitioning.

View Article and Find Full Text PDF