145 results match your criteria: "Institute of Vegetable and Ornamental Crops IGZ[Affiliation]"

Plant and soil biodiversity can have significant effects on herbivore resistance mediated by plant metabolites. Here, we disentangled the independent effects of plant diversity and soil legacy on constitutive and herbivore-induced plant metabolomes of three plant species in two complementary microcosm experiments. First, we grew plants in sterile soil with three different plant diversity levels.

View Article and Find Full Text PDF

Jasmonates (JAs), including jasmonic acid (JA) and its biologically active derivative JA-Ile, are lipid-derived plant signaling molecules. They govern plant responses to stresses, such as wounding and insect herbivory. Wounding elicits a rapid increase of JA and JA-Ile levels as well as the expression of JAR1, coding for the enzyme involved in JA-Ile biosynthesis.

View Article and Find Full Text PDF

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed.

View Article and Find Full Text PDF

Hordeum vulgare differentiates its response to beneficial bacteria.

BMC Plant Biol

October 2023

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Braunschweig, Germany.

Background: In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored.

View Article and Find Full Text PDF

Red cabbage is a popular vegetable in Central Europe and a rich source of glucosinolates (GLSs). Upon hydrolysis, GLSs form health-promoting isothiocyanates (ITCs), but also nitriles and epithionitriles. Recently, ITCs were shown to undergo further hydrolysis, yielding amines.

View Article and Find Full Text PDF

relies on carbon metabolism to adapt to agricultural environments.

Front Microbiol

September 2023

Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany.

, a foodborne and human pathogen, is a constant threat to human health. Agricultural environments, for example, soil and plants, can be ecological niches and vectors for transmission. persistence in such environments increases the risk for consumers.

View Article and Find Full Text PDF

Background: Species within the Ocotea genus (Lauraceae), have demonstrated an interesting profile of bioactivities. Renowned for their diverse morphology and intricate specialized metabolite composition, Ocotea species have re-emerged as compelling candidates for bioprospecting in drug discovery research. However, it is a genus insufficiently studied, particularly regarding anti-inflammatory activity.

View Article and Find Full Text PDF

Growth differentiation factor-15 (GDF15) might be involved in the development of cognitive frailty and depression. Therefore, we evaluated cross-sectional associations of plasma GDF15 with combined cognitive-frailty-and-depression in older (i.e.

View Article and Find Full Text PDF

The beneficial effect of microbial consortium application on plants is strongly affected by soil conditions, which are influenced by farming practices. The establishment of microbial inoculants in the rhizosphere is a prerequisite for successful plant-microorganism interactions. This study investigated whether a consortium of beneficial microorganisms establishes in the rhizosphere of a winter crop during the vegetation period, including the winter growing season.

View Article and Find Full Text PDF

Leaf metabolic traits reveal hidden dimensions of plant form and function.

Sci Adv

September 2023

CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain.

Article Synopsis
  • The metabolome, which is critical for understanding plant structure and function, shows variability across different plant species, but its macroecological aspects are not well understood.
  • A study analyzed leaf metabolome variations in 457 tropical and 339 temperate plant species using five metabolic functional traits, identifying two main axes: chemical defense and leaf longevity.
  • Findings indicate that while both tropical and temperate plants exhibit similar patterns, metabolic traits offer new insights that expand the existing framework of functional traits related to plant life-history strategies.
View Article and Find Full Text PDF

Glucosinolates (GLSs) are secondary plant metabolites with health-promoting effects found in Brassica vegetables. Recently, next to non-enzymatic degradation yielding nitriles, 4-(methylthio)butyl GLS (4MTB-GLS) was shown to undergo side chain oxidation during thermal treatment, forming 4-(methylsulfinyl)butyl GLS (4MSOB-GLS). Here, we investigated natural plant components and artificial analogs on their capability of altering the thermal reactivity of 4MTB-GLS in vegetable broths and model systems using buffers.

View Article and Find Full Text PDF

The Younger Researchers of the Brazilian Chemical Society committee supports early career researchers promoting communication, collaboration, education, networking, representation, and career development.

View Article and Find Full Text PDF

Cabbages are good sources for glucosinolates and S-methyl-l-cysteine sulfoxide (SMCSO), precursors to bioactive volatile hydrolysis products such as isothiocyanates, sulfides and thiosulfinates. Often, white and red cabbages are stored at 0 °C for many months before being sold. Here, we investigated the effect of storage for up to eight months on glucosinolates, SMCSO and the formation of isothiocyanates and derived amines, (epithio)nitriles and volatile organosulfur compounds (VOSCs) in white and red cabbages.

View Article and Find Full Text PDF

The performance of two bio-inoculants either in single or in combined applications with organic fertilizer was tested to determine their effect on plant growth and yield under normal and unfavorable field conditions such as low pH value and low content of P. Arbuscular Mycorrhiza Fungi (AMF; three species of ) and the plant-growth-promoting bacterial strain were applied to barley in a two-year field experiment with different soil pH levels and available nutrients. Grain yield; contents of P, N, K, and Mg; and soil microbial parameters were measured.

View Article and Find Full Text PDF

The health-beneficial effects of vegetables are mainly attributed to their high contents of glucosinolates and the products of their hydrolysis, especially isothiocyanates. Distribution of glucosinolates across plant organs can strongly vary. Here, we investigated the effect of leaf age on glucosinolate accumulation and hydrolysis in two leafy vegetables, pak choi and giant red mustard.

View Article and Find Full Text PDF

The steady-state redox status is physiologically important and therefore homeostatically maintained. Changes in the status result in signaling (eustress) or oxidative damage (distress). Oxidative stress (OS) is a hard-to-quantitate term that can be estimated only based on different biomarkers.

View Article and Find Full Text PDF

Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (, , and ) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming).

View Article and Find Full Text PDF

Salmonella enterica in agricultural environments has become an important concern, due to its potential transmission to humans and the associated public health risks. To identify genes contributing to Salmonella adaptation to such environments, transposon sequencing has been used in recent years. However, isolating Salmonella from atypical hosts, such as plant leaves, can pose technical challenges due to low bacterial content and the difficulty to separate an adequate number of bacteria from host tissues.

View Article and Find Full Text PDF

The assessment of dietary carotenoids via blood measurements has been widely used as a marker for fruit and vegetable consumption. In the present study, modern, non-invasive approaches to assess dietary carotenoids, such as skin measurements and an app-based short dietary record (ASDR), were compared with conventional methods such as plasma status and handwritten 3-day dietary records. In an 8-week observational study, 21 healthy participants aged 50-65 years recorded their daily consumption of carotenoid-rich fruits and vegetables via a specially developed ASDR.

View Article and Find Full Text PDF

Ethylene (ET) controls many facets of plant growth and development under abiotic and biotic stresses. MtEIN2, as a critical element of the ET signaling pathway, is essential in biotic interactions. However, the role of MtEIN2 in responding to abiotic stress, such as combined nutrient deficiency, is less known.

View Article and Find Full Text PDF

The influence of nutritional factors on frailty syndrome is still poorly understood. Thus, we aimed to confirm cross-sectional associations of diet-related blood biomarker patterns with frailty and pre-frailty statuses in 1271 older adults from four European cohorts. Principal component analysis (PCA) was performed based on plasma levels of α-carotene, β-carotene, lycopene, lutein + zeaxanthin, β-cryptoxanthin, α-tocopherol, γ-tocopherol and retinol.

View Article and Find Full Text PDF

In the face of a growing world population and limited land, there is an urgent demand for higher productivity of food crops, and cultivation systems must be adapted to future needs. Sustainable crop production should aim for not only high yields, but also high nutritional values. In particular, the consumption of bioactive compounds such as carotenoids and flavonoids is associated with a reduced incidence of non-transmissible diseases.

View Article and Find Full Text PDF

Temperature is a key environmental cue that influences the distribution and behavior of plants globally. Understanding how plants sense temperature and integrate this information into their development is important to determine how plants adapt to climate change and to apply this knowledge to the breeding of climate-resilient crops. The mechanisms of temperature perception in eukaryotes are only just beginning to be understood, with multiple molecular phenomena with inherent temperature dependencies, such as RNA melting, phytochrome dark reversion, and protein phase change, being exploited by nature to create thermosensory signaling networks.

View Article and Find Full Text PDF

Integrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species , , and (order Marchantiales, Ricciaceae) with (order Marchantiales, Lunulariacea) as an outgroup.

View Article and Find Full Text PDF

Introduction: Hydroponic vegetable cultivation is characterized by high intensity and frequent nitrogen fertilizer application, which is related to greenhouse gas emissions, especially in the form of nitrous oxide (NO). So far, there is little knowledge about the sources of NO emissions from hydroponic systems, with the few studies indicating that denitrification could play a major role.

Methods: Here, we use evidence from an experiment with tomato plants () grown in a hydroponic greenhouse setup to further shed light into the process of NO production based on the NO isotopocule method and the N tracing approach.

View Article and Find Full Text PDF