77 results match your criteria: "Institute of Theoretical and Applied Mechanics[Affiliation]"

Lightweight Concretes with Improved Water and Water Vapor Transport for Remediation of Damp Induced Buildings.

Materials (Basel)

October 2021

Department of Civil Engineering, Faculty of Technology, Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.

Most of the historical and old building stock in Europe are constructed from masonry, when brick, stones, or their combination are bound with traditional mortars. Rising damp, due to accompanying effects, is the main factor influencing the quality of indoor climate as well as having an important impact on the durability of masonry structures. In this study, new types of lightweight concrete with waste aggregate content as a suitable material for remediation of damp damaged masonries were designed and tested.

View Article and Find Full Text PDF

Advanced pore morphology (APM) foam elements are almost spherical foam elements with a solid outer shell and a porous internal structure mainly used in applications with compressive loading. To determine how the deformation of the internal structure and its changes during compression are related to its mechanical response, in-situ time-resolved X-ray computed microtomography experiments were performed, where the APM foam elements were 3D scanned during a loading procedure. Simultaneously applying mechanical loading and radiographical imaging enabled new insights into the deformation behaviour of the APM foam samples when the mechanical response was correlated with the internal deformation of the samples.

View Article and Find Full Text PDF

In recent years, researchers working in biomedical science and technology have investigated alternatives for enhancing the mechanical properties of biomedical materials. In this work, sodium alginate (SA) hydrogel-reinforced nanoparticles (NPs) of hydroxyapatite (HA) were prepared to enhance the mechanical properties of this polymer. Compression tests showed an increase of 354.

View Article and Find Full Text PDF

Comparison of Integral Assessments for Cracked Plates and Pipes.

Materials (Basel)

August 2021

Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 166 07 Prague, Czech Republic.

The purpose of this article is to compare two predictive methods of integral assessments for center-cracked plates, single-edge cracked plates and double-edge cracked plates produced from X52 and X70 steels, and a longitudinally cracked pipe produced from X70 steel. The two methods examined are: the GSM method and the procedure of the French RCC-MR construction code, designated here as the FC method. The accuracy of integral predictions by these methods is visualized by comparing the results obtained with the "reference" values calculated by the EPRI method.

View Article and Find Full Text PDF

The fatigue behaviors of metals are different under different in-service environment and loading conditions. This study was devoted to investigating the combined effects of high and low cycle fatigue loads on the performance of the low alloy steel Q345. Three kinds of experiments were carried out, including the pure high cycle fatigue (HCF) tests, the pure low cycle fatigue (LCF) tests, and the combined high and low cycle fatigue (HLCF) tests.

View Article and Find Full Text PDF

Surface Characteristics of One-Sided Charred Beech Wood.

Polymers (Basel)

May 2021

Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.

The aim of this paper was to analyze selected properties of beech wood ( L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C).

View Article and Find Full Text PDF

Background: Cerebral aneurysms (CA) are a widespread vascular disease affecting 50 per 1000 population. The study of the influence of histological, morphological and hemodynamic factors on the status of the aneurysm has been the subject of many works. However, an accurate and generally accepted relationship has not yet been identified.

View Article and Find Full Text PDF

The identification of markers of the modifications occurring in human bones after death and of the sedimentary and post-sedimentary processes affecting their state of preservation, is of interest for several scientific disciplines. A new index, obtained from spectral deconvolution of the H MAS NMR spectra of bones, relating the number of organic protons to the amount of hydrogen nuclei in the OH groups of bioapatite, is proposed as indicator of the state of preservation of the organic fraction. In the osteological material from three different archaeological sites, this index resulted positively correlated with the extent of collagen loss derived from infrared spectroscopy.

View Article and Find Full Text PDF

The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difficult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited.

View Article and Find Full Text PDF

Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.

View Article and Find Full Text PDF

Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the synthesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free flame retarding epoxy materials. The thermal properties and combustion behavior of the cured epoxy resins were investigated.

View Article and Find Full Text PDF

Foam glass production process redounds to large quantities of waste that, if not recycled, are stockpiled in the environment. In this work, increasing amounts of waste foam glass were used to produce metakaolin-based alkali-activated composites. Phase composition and morphology were investigated by means of X-ray powder diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy.

View Article and Find Full Text PDF

Under pandemic-caused emergency, evaluation of the potential of existing antiviral drugs for the treatment of COVID-19 is relevant. Triazavirin, an antiviral drug developed in Russia for per-oral administration, is involved in clinical trials against SARS-CoV-2 coronavirus. This virus has affinity to epithelial cells in respiratory tract, so drug delivery directly in lungs may enhance therapeutic effect and reduce side effects for stomach, liver, kidneys.

View Article and Find Full Text PDF

The Design and Material Characterization of Reclaimed Asphalt Pavement Enriched Concrete for Construction Purposes.

Materials (Basel)

November 2020

Department of Civil Engineering, Faculty of Technology, Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.

Reclaimed asphalt pavement (RAP) is a valuable commodity originating during processes of road/highways rehabilitations, resurfacing in the cases of the revelation of underneath-placed layers. Removed material can be successfully recycled and utilized as a supplementing material for new hot asphalt mixes. However, its dosages are limited because of variations in properties of aged bitumen compared to fresh material and, thus, a significant amount of waste material is remaining as waste products.

View Article and Find Full Text PDF

The tight regulation of cytoskeleton dynamics is required for a number of cellular processes, including migration, division and differentiation. YAP-TEAD respond to cell-cell interaction and to substrate mechanics and, among their downstream effects, prompt focal adhesion (FA) gene transcription, thus contributing to FA-cytoskeleton stability. This activity is key to the definition of adult cell mechanical properties and function.

View Article and Find Full Text PDF

Rigid polyurethane (PUR) foam is products used as a biomedical material for medical device testing. Thermal stability is a very important parameter for evaluating the feasibility of use for testing surgical instrument load during drilling. This work aimed to perform experimental measurements to determine the dependence of the mechanical properties of a certified PUR on temperature, strain rate and density.

View Article and Find Full Text PDF

The application of cold atmospheric plasma (CAP) in cancer therapy could be one of the new anticancer strategies. In the current work, we used cold atmospheric plasma jet for the treatment of cultured cells and mice. We showed that CAP induced the death of MX-7 mouse rhabdomyosarcoma cells with the hallmarks of immunogenic cell death (ICD): calreticulin and heat shock protein 70 (HSP70) externalization and high-mobility group box 1 protein (HMGB1) release.

View Article and Find Full Text PDF

Several methods, including X-ray radiography, have been developed for the investigation of the characteristics of water-saturated quasi-brittle materials. Here, the water content is one of the most important factors influencing their strength and fracture properties, in particular, as regards to porous building materials. However, the research concentrated on the three-dimensional fracture propagation characteristics is still significantly limited due to the problems encountered with the instrumentation requirements and the size effect.

View Article and Find Full Text PDF

Cold Physical Plasma Decreases the Viability of Lung Adenocarcinoma Cells.

Acta Naturae

January 2019

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia.

The high mortality rate that accompanies cancer spurs the search for new methods that can be used to treat malignant neoplasms. In addition to chemotherapy, electrophysical techniques for tumor treatment appear rather promising. The results of in vitro exposure of A549 human lung adenocarcinoma cells to cold atmospheric plasma (CAP) are hereby presented.

View Article and Find Full Text PDF

Three synthetized polymorphs of calcium carbonate have been tested in combination with the suspension of nanolime particles as potential consolidating agents for contrasting stone decay and overcome some of the limitations of nanolime agents when applied to substrates with large porosity. The modifications induced in the pore network of the Maastricht limestone were analyzed with microscopy and in a non-invasive fashion with small angle neutron scattering and synchrotron radiation micro-computed tomography. A reduction in porosity and pore accessibility at the micrometric scale was detected with the latter technique, and ascribed to the improved pore-filling capacity of the consolidation agent containing CaCO particles.

View Article and Find Full Text PDF

Modelling of Guillotine Cutting of a Cold-Rolled Steel Sheet.

Materials (Basel)

September 2019

Institute of Theoretical and Applied Mechanics, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland.

In this paper, the modelling of a cutting process of a cold-rolled steel sheet using a symmetrical cutting tool is presented. The fast-changing nonlinear dynamic cutting process was elaborated by means of the finite element method and the computer system LS-DYNA. Experimental investigations using scanning electron microscopy were performed and the results are presented in this work.

View Article and Find Full Text PDF

Titanium carbide (TiC), is the most thermodynamically stable compound in the Ti-C-Cu system, which makes it a suitable reinforcement phase for copper matrix composites. In this work, the interaction of a Ti-Cu alloy with different forms of carbon was investigated to trace the structural evolution leading to the formation of in-situ TiC-Cu composite structures. The reaction mixtures were prepared from TiCu alloy ribbons and carbon black or nanodiamonds to test the possibilities of obtaining fine particles of TiC using ball milling and Spark Plasma Sintering (SPS).

View Article and Find Full Text PDF

This paper describes the results of methodical investigations of the effect of the Pitot tube on measurements of gas-dynamic parameters of supersonic axisymmetric underexpanded real and model microjets. Particular attention is paid to distortions of Pitot pressure variations on the jet axis associated with the wave structure of the jet and to distortions of the supersonic core length. In experiments with model jets escaping from nozzles with diameters ranging from 0.

View Article and Find Full Text PDF

In this study, we consider a method for investigating the stochastic response of a nonlinear dynamical system affected by a random seismic process. We present the solution of the probability density of a single/multiple-degree of freedom (SDOF/MDOF) system with several statically stable equilibrium states and with possible jumps of the snap-through type. The system is a Hamiltonian system with weak damping excited by a system of non-stationary Gaussian white noise.

View Article and Find Full Text PDF

Numerical Simulation and Experimental Investigation of Cold-Rolled Steel Cutting.

Materials (Basel)

July 2018

Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland.

The paper presents results of the investigations on numerical computations and experimental verification concerning the influence of selected parameters of the cutting process on the stress state in bundles of cold-rolled steel sheets being cut using a guillotine. The physical model and, corresponding to it, the mathematical model of the analysed steel sheet being cut were elaborated. In this work, the relationship between the cutting depth and the values of reduced Huber⁻Mises stresses as well as the mechanism of sheet separation were presented.

View Article and Find Full Text PDF