216 results match your criteria: "Institute of Technology (HIT)[Affiliation]"

Chemo-optogenetic Dimerization Dissects Complex Biological Processes.

Small Methods

January 2025

Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China.

Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity.

View Article and Find Full Text PDF

Some large social environments are expected to use Covered Path Planning (CPP) methods to handle daily tasks such as cleaning and disinfection. These environments are usually large in scale, chaotic in structure, and contain many obstacles. The proposed method is based on the improved SCAN-STC (Spanning Tree Coverage) method and significantly reduces the solution time by optimizing the backtracking module of the algorithm.

View Article and Find Full Text PDF

Carbon-glass hybrid fiber-reinforced epoxy polymer (C-GFRP) winding pipes integrated with the advantages of light weight, high strength, corrosion resistance, and cost-effectiveness offer immense potential to mitigate corrosion issues in oil, gas, and water transportation pipelines. In this study, C-GFRP winding pipes underwent accelerated aging tests through immersion in distilled water at temperatures of 25 °C, 40 °C, and 60 °C for 146 days. Water absorption tests were conducted to investigate the water absorption behavior of only CFRP- or GFRP-side absorbed water.

View Article and Find Full Text PDF

Multistimuli-Responsive Soft Actuators with Controllable Bionic Motions.

ACS Appl Mater Interfaces

November 2024

Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin 150080, People's Republic of China.

Soft actuators with biomimetic self-regulatory intelligence have garnered significant scientific interest due to their potential applications in robotics and advanced functional devices. We present a multistimuli-responsive actuator made from a carbon nitride/carbon nanotube (CN/CNTs) composite film. This film features a molecular switch based on reversible hydrogen bonds, whose asymmetric distribution endows the film with the ability to absorb water unevenly and convert molecular motion into macroscopic movement.

View Article and Find Full Text PDF

Differential Occupational Health Risks between Methylated PAHs and PAHs: Monitoring 126 PAHs and 6 Oxidative Stress Markers in Paired Serum-Urine Samples.

Environ Health (Wash)

March 2024

International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China.

The hazards of polycyclic aromatic hydrocarbons (PAHs) on occupationally exposed population have been widely acknowledged. However, the occupational exposure risks associated their derivatives, methylated PAHs, remain poorly understood. This study conducted a screen of 126 PAHs and 6 oxidative stress biomarkers (OSBs) in paired serum-urine samples from 110 petrochemical workers to assess the risk associated with different PAHs exposure.

View Article and Find Full Text PDF

A Flexible Organomagnetic Single-Layer Composite Film with Built-In Multistimuli Responsivity.

ACS Appl Mater Interfaces

November 2024

School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Materials possessing multiple properties and functionalities, that can be controlled or modulated by external stimuli, are a central focus of current research in materials sciences due to their potential to significantly enhance various future technological applications. Herein, we report a significant advancement in this field through the development of a smart, multifunctional organomagnetic composite material. By utilizing a thin layer of polydimethylsiloxane (PDMS) and polypyrrole (PPy) precursors, doped with nickel nanoparticles (NiNPs), we have created an innovative organomagnetic, PDMS/PPy/NiNPs (PPN), single-layer composite film that displays multistimuli responsivity.

View Article and Find Full Text PDF

This paper proposes a unique configuration for an all-optical D Flip Flop (D-FF) utilizing a quasi-square ring resonator (RR) and T-Splitter, as well as NOT and OR logic gates within a 2-dimensional square lattice photonic crystal (PC) structure. The components realizing the all-optical D-FF comprise of optical waveguides in a 2D square lattice PC of 45 × 23 silicon (Si) rods in a silica (SiO) substrate. The utilization of these specific materials has facilitated the fabrication process of the design, diverging from alternative approaches that employ an air substrate, a method inherently unattainable in fabrication.

View Article and Find Full Text PDF

Visible light communication (VLC) is becoming more relevant due to the accelerated advancement of optical fibers. Polymer optical fiber (POF) technology appears to be a solution to the growing demand for improved transmission efficiency and high-speed data rates in the visible light range. However, the VLC system requires efficient splitters with low power losses to expand the optical energy capability and boost system performance.

View Article and Find Full Text PDF

Tracing residual patterns and microbial communities of pharmaceuticals and personal care products from 17 urban landfills leachate in China.

J Hazard Mater

September 2024

International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate.

View Article and Find Full Text PDF

A new stress measurement strategy based on time-frequency characteristics of Lamb waves.

Ultrasonics

August 2024

Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin 150080, People's Republic of China.

Existing stress evaluation methods based on the Lamb waves mainly use the time of flight (TOF) or velocity as the means of stress measurement. However, these two features used for stress measurement are sometimes insensitive to stress changes. Therefore, it is essential to explore other features that are potentially more sensitive to stress changes.

View Article and Find Full Text PDF

Quantification of Charge Transport and Mass Deprivation in Solid Electrolyte Interphase for Kinetically-Stable Low-Temperature Lithium-Ion Batteries.

Angew Chem Int Ed Engl

October 2024

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.

Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 °C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li-solvent interaction enables mobile Li liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics.

View Article and Find Full Text PDF

Patients with myocardial ischemia and infarction are at increased risk of arrhythmias, which in turn, can exacerbate the overall risk of mortality. Despite the observed reduction in recurrent arrhythmias through antiarrhythmic drug therapy, the precise mechanisms underlying their effectiveness in treating ischemic heart disease remain unclear. Moreover, there is a lack of specialized drugs designed explicitly for the treatment of myocardial ischemic arrhythmia.

View Article and Find Full Text PDF

A comprehensive grasp of the myocardial micro-architecture is essential for understanding diverse heart functions. This study aimed to investigate three-dimensional (3D) cardiomyocyte arrangement in the laminar structure using X-ray phase-contrast microtomography. Using the ID-19 beamline at the European Synchrotron Radiation Facility, we imaged human left ventricular (LV) wall transparietal samples and reconstructed them with an isotropic voxel edge length of 3.

View Article and Find Full Text PDF

Finding new catalysts and pyrolysis technologies for efficiently recycling wasted plastics into fuels and structured solid materials of high selectivity is the need of time. Catalytic pyrolysis is a thermochemical process that cracks the feedstock in an inert gas environment into gaseous and liquid fuels and a residue. This study is conducted on microwave-assisted catalytic recycling of wasted plastics into nanostructured carbon and hydrogen fuel using composite magnetic ferrite catalysts.

View Article and Find Full Text PDF

Objective: The prediction of upcoming circular walking during linear walking is important for the usability and safety of the interaction between a lower limb assistive device and the wearer. This study aims to build a bilateral elimination rule-based finite class Bayesian inference system (BER-FC-BesIS) with the ability to predict the transition between circular walking and linear walking using inertial measurement units.

Methods: Bilateral motion data of the human body were used to improve the recognition and prediction accuracy of BER-FC-BesIS.

View Article and Find Full Text PDF

Occurrence, seasonal variations, and fate of household and personal care chemicals in a wastewater treatment plant with Bacillus bioreactor process.

Chemosphere

June 2024

International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada.

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored.

View Article and Find Full Text PDF

Methylated derivatives of polycyclic aromatic hydrocarbons in road dust, green belt soil and parking lot dust: occurrence, spatial distribution and emission sources.

Environ Geochem Health

April 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.

Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively.

View Article and Find Full Text PDF

Seasonal patterns, fate and ecological risk assessment of pharmaceutical compounds in a wastewater treatment plant with Bacillus bio-reactor treatment.

J Environ Manage

April 2024

College of the Environment and Ecology, Xiamen University, Xiamen, China; Wadsworth Center, New York State Department of Health, Albany, NY, 12237, United States. Electronic address:

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge.

View Article and Find Full Text PDF

Background: Controlling a multi-grasp prosthetic hand still remains a challenge. This study explores the influence of merging gaze movements and augmented reality in bionics on improving prosthetic hand control.

Methods: A control system based on gaze movements, augmented reality, and myoelectric signals (i-MYO) was proposed.

View Article and Find Full Text PDF

The operation of a four-channel multiplexer, utilizing multimode interference (MMI) wavelength division multiplexing (WDM) technology, can be designed through the cascading of MMI couplers or by employing angled MMI couplers. However, conventional designs often occupy a larger footprint, spanning a few millimeters, thereby escalating the energy power requirements for the photonic chip. In response to this challenge, we propose an innovative design for a four-channel silicon nitride (SiN) MMI coupler with a compact footprint.

View Article and Find Full Text PDF

A Fast-Charge Graphite Anode with a Li-Ion-Conductive, Electron/Solvent-Repelling Interface.

Angew Chem Int Ed Engl

May 2024

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.

Graphite has been serving as the key anode material of rechargeable Li-ion batteries, yet is difficultly charged within a quarter hour while maintaining stable electrochemistry. In addition to a defective edge structure that prevents fast Li-ion entry, the high-rate performance of graphite could be hampered by co-intercalation and parasitic reduction of solvent molecules at anode/electrolyte interface. Conventional surface modification by pitch-derived carbon barely isolates the solvent and electrons, and usually lead to inadequate rate capability to meet practical fast-charge requirements.

View Article and Find Full Text PDF

One-Step Microfluidic Fabrication of Bioinspired Microfibers with a Spindle-Knot Structure for Fog Harvest.

ACS Appl Mater Interfaces

March 2024

Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China.

Many biomimetic microfibers have been designed from spider silk to collect water efficiently from humid air as a result of its periodic spindle-knot structure, which enhances the direct movement and convergence of captured fog droplets. Here, a hydrodynamic flow-focusing microfluidic device with a theta-shaped tube is designed for the one-step fabrication of bioinspired microfibers with a spindle-knot structure for fog harvest. The morphology of the structured microfibers, including height, width, and spacing of spindle knots, can be adjusted readily by regulating the flow rate of specific phases.

View Article and Find Full Text PDF

Occurrence and fate of pharmaceuticals and personal care products in a wastewater treatment plant with Bacillus bio-reactor treatment.

Sci Total Environ

May 2024

International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Norway.

Pharmaceuticals and personal care products (PPCPs) have attracted wide attention due to their environmental impacts and health risks. PPCPs released through wastewater treatment plants (WWTPs) are estimated to be 80 %. Nevertheless, the occurrence of PPCPs in the WWTPs equipped with Bacillus spec.

View Article and Find Full Text PDF

Multimedia distribution, dynamics, and seasonal variation of PAHs in Songhua wetland: Implications for ice-influenced conditions.

Chemosphere

April 2024

International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China. Electronic address:

The knowledge of polycyclic aromatic hydrocarbons (PAHs) in wetlands remains limited. There is a research need for the dynamics between interfaces of multimedia when ice is present in this fragile ecosystem. In this study, sediment, open-water, sub-ice water, and ice samples were collected from the Songhua wetland to study the behaviors of PAHs with and without influences from ice.

View Article and Find Full Text PDF

Bombarding WS multilayered nanoparticles and nanotubes with focused ion beams of Ga ions at high doses, larger than 10 cm, leads to drastic structural changes and melting of the material. At lower doses, when the damage is negligible or significantly smaller, the amount of implanted Ga is very small. A substantial increase in the amount of implanted Ga, and not appreciable structural damage, are observed in nanoparticles previously hydrogenated by a radio-frequency activated hydrogen plasma.

View Article and Find Full Text PDF