180 results match your criteria: "Institute of Surface Chemistry and Catalysis[Affiliation]"
J Am Chem Soc
February 2017
Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany.
Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2017
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.
We describe the construction and discuss the performance of a novel combined ultrahigh vacuum (UHV)-electrochemistry set-up, allowing the controlled preparation and structural characterization of complex nanostructured electrode surfaces by high resolution scanning tunnelling microscopy (STM) under UHV conditions on the one hand and, after electrode transfer under clean conditions, electrochemical measurements under continuous, controlled electrolyte mass transport conditions on the other. Electrochemical measurements can be coupled with online product detection, either using an additional collector electrode or by differential electrochemical mass spectrometry (DEMS). The potential of the set-up will be illustrated in two electrocatalytic reactions on complex, but structurally well-defined bimetallic electrode surfaces, O reduction on PtAg/Pt(111) monolayer surface alloys and bulk CO oxidation on Pt monolayer island modified Ru(0001) electrodes.
View Article and Find Full Text PDFAnalyst
October 2016
Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany.
Substrate-integrated hollow waveguides (iHWG) represent an innovative generation of photon conduits, which can simultaneously serve as highly miniaturized gas cells with low sample volume. In this communication, we introduce a novel concept for analyzing the performance of catalysts via infrared gas phase analysis based on iHWGs. Due to rapid gas exchange and sample transient times within the iHWG, compositional changes of a continuous gas stream after interaction with a catalyst assembly can be monitored with high time resolution.
View Article and Find Full Text PDFBeilstein J Nanotechnol
June 2016
Institute of Solid State Physics, Ulm University, 89069 Ulm, Germany; Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany.
Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, D-8908 Ulm, Germany.
A comparative and in-depth investigation on the reactivity of various Li-based electrolytes and of the solid electrolyte interface (SEI) formed at graphite electrode is carried out using X-ray photoelectron spectroscopy (XPS), chemical simulation test, and differential scanning calorimetry (DSC). The electrolytes investigated include LiX (X = PF6, TFSI, TDI, FSI, and FTFSI), dissolved in EC-DMC. The reactivity and SEI nature of electrolytes containing the relatively new imide (LiFSI and LiFTFSI) and imidazole (LiTDI) salts are evaluated and compared to those of well-researched LiPF6(-) and LiTFSI-based electrolytes.
View Article and Find Full Text PDFChemSusChem
July 2016
Accumulators Materials Research, Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Helmholtzstraße 8, 89081, Ulm, Germany.
Morphologically optimized LiNi0.5 Mn1.5 O4 (LMNO-0) particles were treated with LiNbO3 to prepare a homogeneously coated material (LMNO-Nb) as cathode in batteries.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2016
Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
In the quest for cheap and earth abundant but highly effective and energy efficient water splitting catalysts, manganese oxide represents one of the materials of choice. In the framework of a new hierarchical modeling strategy we employ free non-ligated manganese oxide clusters MnxOx+y(+) (x = 2-5, y = -1, 0, 1, 2) as simplified molecular models to probe the interaction of water with nano-scale manganese oxide materials. Infrared multiple-photon dissociation (IR-MPD) spectroscopy in conjunction with first-principles spin density functional theory calculations is applied to study several series of MnxOx+y(H2O)n(+) complexes and reveal that the reaction of water with MnxOx+y(+) leads to the deprotonation of the water molecules via hydroxylation of the cluster oxo-bridges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, P.O. Box 3640, D-76021 Karlsruhe, Germany.
A study of the reactions of liquid acetone and toluene on transition metal hydrides, which can be used in thermal energy or hydrogen storage applications, is presented. Hydrogen is confined in TiFe, Ti0.95Zr0.
View Article and Find Full Text PDFChemSusChem
June 2016
Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 89081, Ulm, Germany.
A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.
View Article and Find Full Text PDFChemSusChem
May 2016
Helmholtz Institute Ulm (HIU), Electrochemistry I, Helmholtzstrasse 11, 89081, Ulm, (Germany).
The aqueous processing of lithium-ion battery (LIB) electrodes has the potential to notably decrease the battery processing costs and paves the way for a sustainable and environmentally benign production (and recycling) of electrochemical energy storage devices. Although this concept has already been adopted for the industrial production of LIB graphite anodes, the performance decay of cathode electrodes based on transition metal oxides processed in aqueous environments is still an open issue. In this study, we show that the addition of small quantities of phosphoric acid into the cathodic slurry yields Li[Ni0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2016
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
Direct formic acid fuel cell (DFAFC) with Pd-based catalyst anode is a promising energy converter to power portable devices. However, its commercialization is entangled with insufficient activity and poor stability of existing anode catalysts. Here we initially report that a DFAFC using facilely synthesized Pd-B/C with ca.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2016
Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) .
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2016
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.
Methanol synthesis for chemical energy storage, via hydrogenation of CO2 with H2 produced by renewable energies, is usually accompanied by the undesired formation of CO via the reverse water-gas shift reaction. Aiming at a better mechanistic understanding of methanol formation from CO2/H2 on highly selective supported Au/ZnO catalysts we have investigated the role of CO in the reaction process using isotope labelling experiments. Using (13)C-labelled CO2, we found for reaction at 5 bar and 240 °C that (i) the methanol formation rate is significantly higher in CO2-containing gas mixtures than in a CO2-free mixture and (ii) in mixtures containing both CO2 and CO methanol formation from CO increases with the CO content up to 1% CO, and then remains at 20% of the total methanol formation up to a CO2/CO ratio of 1/1, making CO2 the preferred carbon source in these mixtures.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2016
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.
Aiming at a fundamental understanding of the processes at the electrode|ionic liquid interface in Li ion batteries, we investigated the interaction of the ionic liquid n-butyl-n-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BMP][TFSA] and of Li with a reduced rutile TiO2(110) (1 × 1) surface as well as the interaction between [BMP][TFSA] and Li on the TiO2(110) surface under ultrahigh vacuum (UHV) conditions by X-ray photoelectron spectroscopy and scanning tunnelling microscopy. Between 80 K and 340 K [BMP][TFSA] adsorbs molecularly on the surface and at higher temperatures decomposition is observed, resulting in products such as Sad, Fad and TiNx. The decomposition pattern is compared to proposals based on theory.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2016
Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstraße 11, D-89081 Ulm, Germany.
The interaction between (sub)monolayers of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide [BMP](+)[TFSA](-) and graphite(0001), which serves as a model for the anode|electolyte interface in Li-ion batteries, was investigated under ultrahigh vacuum conditions in a combined experimental and theoretical approach. High-resolution scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and dispersion-corrected density functional theory (DFT-D) calculations were employed. After vapor deposition at 300 K, XPS indicates molecular adsorbates with a 1:1 ratio of cations/anions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2015
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States).
As the biological activation and oxidation of water takes place at an inorganic cluster of the stoichiometry CaMn4 O5 , manganese oxide is one of the materials of choice in the quest for versatile, earth-abundant water splitting catalysts. To probe basic concepts and aid the design of artificial water-splitting molecular catalysts, a hierarchical modeling strategy was employed that explores clusters of increasing complexity, starting from the tetramanganese oxide cluster Mn4 O4 (+) as a molecular model system for catalyzed water activation. First-principles calculations in conjunction with IR spectroscopy provide fundamental insight into the interaction of water with Mn4 O4 (+) , one water molecule at a time.
View Article and Find Full Text PDFChemSusChem
November 2015
Institute of Surface Chemistry and Catalysis, Ulm University, 89069, Ulm, Germany.
To better understand the role of water in the selective methanation of CO in CO2-rich reformate gases on Ru/Al2O3 catalysts, the influence of exposing these catalysts to H2O-rich reformate gases on their reaction characteristics in transient experiments was investigated by employing kinetic and in situ spectroscopic measurements as well as ex situ catalyst characterization. Transient exposure of the ruthenium catalyst to wet reaction gas (5 or 15% H2O) results in significantly enhanced activity and selectivity for CO methanation in subsequent reactions in dry reformate compared with activation and reaction in dry reformate directly. Operando X-ray absorption spectroscopy results reveal that this is in accordance with a significant decrease in ruthenium particle size, which is stable during subsequent reaction in dry reformate.
View Article and Find Full Text PDFChemSusChem
November 2015
Institute of Surface Chemistry and Catalysis, Ulm University, 89069, Ulm, Germany.
To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2015
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.
Aiming at a comprehensive understanding of the interaction of ionic liquids (ILs) with metal surfaces we have investigated the adsorption of two closely related ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][TFSA] and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide [OMIM][TFSA], with two noble metal surfaces, Au(111) and Ag(111), under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM). At room temperature, the ILs form a 2D liquid on either of the two surfaces, while at lower temperatures they condense into two-dimensional (2D) islands which exhibit ordered structures or a short-range ordered 2D glass structure. Comparison of the adlayer structures formed in the different adsorption systems and also with those determined recently for n-butyl-n-methylpyrrolidinium [TFSA](-) adlayers on Ag(111) and Au(111) (B.
View Article and Find Full Text PDFChemphyschem
October 2015
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm (Germany).
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X-ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub-monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600-650 K, which is evidenced by core-level shifts (CLSs) of the Ag(3d5/2 ) signal.
View Article and Find Full Text PDFSci Rep
July 2015
Helmholtz Institute Ulm (HIU), D-89081 Ulm, Germany.
Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4-8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway.
View Article and Find Full Text PDFJ Am Chem Soc
July 2015
†Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany.
The selectivity for CO methanation is a decisive aspect for the practical application of the methanation reaction for the removal of CO from CO2-rich H2 fuel gases produced via hydrocarbon reforming. We show that increasing the water content in the feed gas, up to technically relevant levels of 30%, significantly increases the selectivity of supported Ru catalysts compared with operation in (almost) dry gas, while in operando EXAFS measurements reveal a gradual decrease in the Ru particle size with increasing amounts of water in the gas feed. Consequences of these findings and related IR spectroscopic data for the mechanistic understanding and practical applications are outlined.
View Article and Find Full Text PDFBeilstein J Nanotechnol
May 2015
Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.
ChemSusChem
February 2015
Institute of Surface Chemistry and Catalysis, Ulm University, 89081 Ulm (Germany), Fax: (+49) 731-502-5452 www.uni-ulm.de/iok.
The potential of metal oxide supported Au catalysts for the formation of methanol from CO2 and H2 under conditions favorable for decentralized and local conversion, which could be concepts for chemical energy storage, was investigated. Significant differences in the catalytic activity and selectivity of Au/Al2 O3 , Au/TiO2 , AuZnO, and Au/ZrO2 catalysts for methanol formation under moderate reaction conditions at a pressure of 5 bar and temperatures between 220 and 240 °C demonstrate pronounced support effects. A high selectivity (>50 %) for methanol formation was obtained only for Au/ZnO.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2014
Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany.
A novel thin-layer photoelectrochemical flow cell allowing the online mass spectrometric detection of volatile reaction products during photoelectrocatalytic reactions has been developed and applied for separating the contributions from photoelectrochemical water splitting and photoelectrooxidation of formic acid to the overall photocurrent in formic acid containing aqueous solution, using a nanocrystalline TiO2 (P25) thin-film electrode. The data reveal a clear suppression of the water oxidation reaction to O2 in the presence of formic acid. Advantages of this flow cell design over conventional photoelectrochemical cells with stagnant electrolyte in terms of mass transport will be demonstrated and discussed.
View Article and Find Full Text PDF