7,653 results match your criteria: "Institute of Subtropical Agriculture; Chinese Academy of Sciences; Changsha 410125[Affiliation]"

Genome assembly and multi-omics analyses of Isodon lophanthodies provide insights into the distribution of medicinal metabolites induced by exogenous methyl jasmonate.

BMC Plant Biol

December 2024

Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.

Background: Isodon lophanthodies is a perennial herb and the whole plant has medicinal value distributed in southern China and southeast Asia. The absence of a reference genome has hindered evolution and genomic breeding research of this species.

Results: In this study, we present a high-quality, chromosome-level genome assembly of I.

View Article and Find Full Text PDF

Shoot-Silicon-Signal protein to regulate root silicon uptake in rice.

Nat Commun

December 2024

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.

View Article and Find Full Text PDF

A comprehensive proteomic map revealing the regulation of the development of long-duration, red butterfly-shaped fruit in Euscaphis japonica.

Int J Biol Macromol

December 2024

College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China. Electronic address:

Fruit features are crucial for plant propagation, population growth, biodiversity preservation, and evolutionary survival. However, the synergistic regulatory mechanisms underlying the development of fruit traits such as color, shape and duration are unclear. Euscaphis japonica, whose fruits have a red-winged pericarp and persist for a long period of time, is an important ornamental plant in eastern Asia.

View Article and Find Full Text PDF

A total of 640 one-day-old Cobb 500 MV × Cobb 500 FF mixed broilers were randomly assigned to one of four experimental treatments with four replicates per treatment and 40 birds per replicate for 32 days. The treatments consisted of a basal diet (control group), basal diet + 0.02% zinc bacitracin (AGP group), basal diet + 0.

View Article and Find Full Text PDF

Toward Marker-Assisted Selection in Breeding for Wilt Tropical Race-4 Type Resistant Bananas.

J Fungi (Basel)

December 2024

Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil.

wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of f. sp.

View Article and Find Full Text PDF

Gen. nov. and Gen. nov., Two New Genera Revealed by Morphological and Phylogenetic Evidences in the Family Boletaceae from Subtropical China.

J Fungi (Basel)

November 2024

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.

Boletaceae, the largest and most diverse family of Boletales (Agaricomycetes and Basidiomycota), is both ecologically and economically important. Although many taxa have been described in China, the diversity of the family still remains incompletely understood. In the present study, gen.

View Article and Find Full Text PDF

[PLSR model based on near-infrared spectroscopy for the detection of wood fiber anatomy of ].

Ying Yong Sheng Tai Xue Bao

October 2024

Research Institute of Subtropical Forestry, Chinese Academy of Forestry/Zhejiang Key Laboratory of Forest Genetics and Bree-ding, Hangzhou 311400, China.

To rapidly acquire fiber phenotypic data for wood quality assessment, we used a portable NIR spectro-meter to collect spectral data in 100 individuals of at 18-year-old of 20 different provenances, and simultaneously collected wood cores. Wood basic density and the anatomical structure of wood fiber were measured. The standard normal variate (SNV), orthogonal signal correction (OSC), and multiplicative scatter correction (MSC) methods were used for spectral preprocessing, the competitive adaptive reweighted sampling (CARS) method were used for wavelength selection, and the partial least squares regression (PLSR) model were established.

View Article and Find Full Text PDF

[Soil health evaluation of loquat orchard based on soil quality index method].

Ying Yong Sheng Tai Xue Bao

October 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China.

Fruit quality and yield in orchards will decrease after long-term planting. To analyze the changes of soil quality under different planting years and identify the key factors of the declining of orchard soil quality could provide scientific foundation for optimizing fertilization management of orchard soil. In this study, we analyzed the changes of soil physical, chemical, and biological properties of loquat orchard under different planting years (<10 years, 10-15 years, 15-20 years, ≥20 years) in Ninghai County, Zhejiang Province, and evaluated soil health by using soil quality index, multifunctionality index, and sensitivity and resistance indicators.

View Article and Find Full Text PDF

[Effect of exogenous paclobutrazol on the drought resistance of seedlings under drought stress].

Ying Yong Sheng Tai Xue Bao

October 2024

Hunan Academy of Forestry, Changsha 410004, China.

To clarify the response mechanism of exogenous paclobutrazol on drought resistance in seedlings, we investigated the effects of spraying different concentrations of paclobutrazol (25, 50, 100 mg·L) on the photosynthetic and antioxidant systems of 2-year-old seedlings under drought stress using natural drought method. The results showed that drought stress significantly reduced the photosynthesis and broke the dynamic balance of antioxidant system in seedlings. Spraying with different concentrations of paclobutrazol effectively alleviated the negative impacts of drought stress, and enhanced the defense capability of photosynthetic and antioxidant systems, with the 100 mg·L paclobutrazol treatment being the most effective.

View Article and Find Full Text PDF

Unlocking the role of silicon against biotic stress in plants.

Front Plant Sci

December 2024

Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.

The requirement for agricultural crops continues to enhance with the continuous growth of the human population globally. Plant pathogenic diseases outbreaks are enhancing and threatening food security and safety for the vulnerable in different regions worldwide. Silicon (Si) is considered a non-essential element for plant growth.

View Article and Find Full Text PDF

Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH production by rumen microbes, followed by in vitro laboratory testing of potential candidates.

View Article and Find Full Text PDF

Heavy metals (HMs) exert a profound influence on soil carbon storage potential. The microbially-mediated association between HM content and carbon structure in riverine sediments remains unclear in lotic ecosystems. We investigated the spatiotemporal variations of HMs content, carbon content and microbial communities in riverine surface sediments, and further explored the chemical structure of sediment organic carbon (OC), the molecular composition of dissolved organic matter (DOM), and their interactions with microorganisms.

View Article and Find Full Text PDF

Reproduction traits are important factors determining the efficiency of any sheep production system. This study evaluates the age at first lambing (AFL), lambing interval (LI), litter weight at birth (LBWT), litter weight at weaning (LWWT), birth weight of ewe (EBWT) and weaning weight of ewes (EWWT) in a crossbreeding program between the Red Maasai (RRRR) and Dorper sheep and their crosses, 75% Dorper and 50% Dorper (DDRR) breeds. All the traits significantly (P < 0.

View Article and Find Full Text PDF

Occurrence and risk factors of equine piroplasmosis in Portugal: A five-year retrospective study.

Vet Parasitol

December 2024

CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal; Elvas School of Biosciences, Polytechnic Institute of Portalegre, Portugal; VALORIZA - Research Centre for Endogenous Resources Valorisation, Polytechnic Institute of Portalegre, Portugal.

Equine piroplasmosis (EP) is a tick-borne disease of equids caused by Theileria equi, Theileria haneyi, and Babesia caballi. EP is endemic in most tropical and subtropical regions worldwide, and there is a likelihood that it is also endemic in Portugal. This retrospective study aimed to determine the seroprevalence, prevalence, and potential risk factors of EP in our country over the past five years.

View Article and Find Full Text PDF

From White to Reddish-Brown: The Anthocyanin Journey in Driven by Auxin and Genetic Regulators.

J Agric Food Chem

December 2024

Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.

, or wine-cap Stropharia, is a well-known edible mushroom cultivated globally. The pileipellis color is a crucial quality attribute of , exhibiting significant variation throughout its developmental stages. However, the pigment types and regulatory mechanisms behind color variation remain unclear.

View Article and Find Full Text PDF

Chlorpyrifos Influences Tadpole Development by Disrupting Thyroid Hormone Signaling Pathways.

Environ Sci Technol

December 2024

Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China.

Chlorpyrifos (CPF) is a widely used organophosphate insecticide with serious toxicological effects on aquatic animals. Although extensively studied for neurotoxicity and endocrine disruption, its stage-specific effects on amphibian metamorphosis and receptor-level interactions remain unclear. This study investigated the effects of CPF on metamorphosis at environmentally relevant concentrations (1.

View Article and Find Full Text PDF

Signaling pathways mediating the induction of preharvest fruit drop in litchi.

Front Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.

Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.

View Article and Find Full Text PDF

Enhancing plant resilience: Nanotech solutions for sustainable agriculture.

Heliyon

December 2024

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.

The global population growth is driving up the demand for agricultural products, while traditional farming methods like those from the Green Revolution are becoming unsustainable due to climate change. To address these challenges and ensure agricultural sustainability, innovative techniques, such as nanotechnology, are essential to meet rising food demands and enhance agricultural sustainability. Nanotechnology, which promotes a more sustainable and resilient agricultural system while enhancing food security, is a key catalyst for the Agri-tech revolution.

View Article and Find Full Text PDF

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF

Improving genomic prediction accuracy of pig reproductive traits based on genotype imputation using preselected markers with different imputation platforms.

Animal

November 2024

Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Genomic prediction has been widely applied to the pig industry and has greatly accelerated the progress of genetic improvement in pigs. With the development of sequencing technology and price reduction, more and more genotype imputation panels of pig have been investigated, providing an effective and economical method to further study the genetic variation of pig economic traits. In this study, the imputation from 80 k Single Nucleotide Polymorphism chip data of 832 Large White pigs to whole-genome sequencing genotypes was performed by Swine Imputation Server, Pig Haplotypes Reference Panel (PHARP), Animal Genotype Imputation Database and 1k-pig-genomes four thousand-pig imputation panels.

View Article and Find Full Text PDF

Characterization of MPK family members in the genus Citrus (Rutaceae) and analysis of the function of AbMPK13 in the response to citrus canker in Atalantia buxifolia.

Plant Physiol Biochem

December 2024

Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China. Electronic address:

Citrus bacterial canker has deleterious effects on global citrus production. The mitogen-activated protein kinase (MAPK) signaling cascade regulates plant defense against pathogen infection. Here, we identified 11 MAPKs in Atalantia buxifolia, a wild citrus species with high stress tolerance.

View Article and Find Full Text PDF

Low expression of CCKBR in the acinar cells is associated with insufficient starch hydrolysis in ruminants.

Commun Biol

December 2024

CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China.

Unlike monogastric animals, ruminants exhibit significantly lower starch digestibility in the small intestine. A better understanding of the physiological mechanisms that regulate digestion patterns in ruminants could lead to an increased use of starch concentrates. Here we show more robust pancreatic exocrine function in adult goats (AG) than in neonatal goats (NG) by combining scRNA-seq and proteomic analysis.

View Article and Find Full Text PDF

Ripening significantly influences fruit quality and commercial value. Peaches (Prunus persica), a climacteric fruit, exhibit increased ethylene biosynthesis and decreased fruit firmness during ripening. NAC-like proteins activated by AP3/P1 (NAP) proteins are a subfamily of NAC transcription factors, and certain NAPs have been shown to intervene in fruit ripening.

View Article and Find Full Text PDF

The GRAS gene family and its roles in pineapple (Ananas comosus L.) developmental regulation and cold tolerance.

BMC Plant Biol

December 2024

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Background: Pineapple (Ananas comosus L.) is a major tropical fruit crop with considerable economic importance, and its growth and development are significantly impacted by low temperatures. The plant-specific GRAS gene family plays crucial roles in diverse processes, including flower and fruit development, as well as in stress responses.

View Article and Find Full Text PDF