1,318 results match your criteria: "Institute of Structural and Molecular Biology[Affiliation]"

The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation.

Biochim Biophys Acta Mol Basis Dis

February 2024

Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom. Electronic address:

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the APOBEC3B (A3B) enzyme in lung cancer, specifically in non-small-cell lung cancer (NSCLC) driven by the epidermal growth factor receptor (EGFR).
  • It was found that A3B expression can limit tumor growth in mouse models but is linked to resistance against EGFR-targeted therapies in tumors.
  • The research suggests that A3B could be targeted to improve the effectiveness of cancer treatments, as its upregulation was observed in both preclinical models and patients undergoing EGFR-targeted therapy.
View Article and Find Full Text PDF

Objectives: Cardiovascular disease through accelerated atherosclerosis is a leading cause of mortality for patients with systemic lupus erythematosus (SLE), likely due to increased chronic inflammation and cardiometabolic defects over age. We investigated age-associated changes in metabolomic profiles of SLE patients and healthy controls (HCs).

Methods: Serum NMR metabolomic profiles from female SLE patients (n = 164, age = 14-76) and HCs (n = 123, age = 13-72) were assessed across age by linear regression and by age group between patients/HCs (Group 1, age ≤ 25, n = 62/46; Group 2, age = 26-49, n = 50/46; Group 3, age ≥ 50, n = 52/31) using multiple t tests.

View Article and Find Full Text PDF

Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly.

Nat Commun

November 2023

Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.

Glial-cell line derived neurotrophic factor (GDNF) bound to its co-receptor GFRα1 stimulates the RET receptor tyrosine kinase, promoting neuronal survival and neuroprotection. The GDNF-GFRα1 complex also supports synaptic cell adhesion independently of RET. Here, we describe the structure of a decameric GDNF-GFRα1 assembly determined by crystallography and electron microscopy, revealing two GFRα1 pentamers bridged by five GDNF dimers.

View Article and Find Full Text PDF

Large-scale clustering of AlphaFold2 3D models shines light on the structure and function of proteins.

Mol Cell

November 2023

Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK. Electronic address:

Two recent studies exploited ultra-fast structural aligners and deep-learning approaches to cluster the protein structure space in the AlphaFold Database. Barrio-Hernandez et al. and Durairaj et al.

View Article and Find Full Text PDF

Development of a specific and potent IGF2BP1 inhibitor: A promising therapeutic agent for IGF2BP1-expressing cancers.

Eur J Med Chem

January 2024

The Pennsylvania State University College of Medicine, Department of Pharmacology, Penn State Cancer Institute, Hershey, PA, USA. Electronic address:

IGF2BP1 is a protein that controls the stability, localization, and translation of various mRNA targets. Poor clinical outcomes in numerous cancer types have been associated with its overexpression. As it has been demonstrated to impede tumor growth and metastasis in animal models, inhibiting IGF2BP1 function is a promising strategy for combating cancer.

View Article and Find Full Text PDF

Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation.

Circ Res

December 2023

School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King's College London, United Kingdom.

Background: Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH.

View Article and Find Full Text PDF

sciCSR infers B cell state transition and predicts class-switch recombination dynamics using single-cell transcriptomic data.

Nat Methods

May 2024

Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London, UK.

Class-switch recombination (CSR) is an integral part of B cell maturation. Here we present sciCSR (pronounced 'scissor', single-cell inference of class-switch recombination), a computational pipeline that analyzes CSR events and dynamics of B cells from single-cell RNA sequencing (scRNA-seq) experiments. Validated on both simulated and real data, sciCSR re-analyzes scRNA-seq alignments to differentiate productive heavy-chain immunoglobulin transcripts from germline 'sterile' transcripts.

View Article and Find Full Text PDF

Clathrin light chains CLCa and CLCb have non-redundant roles in epithelial lumen formation.

Life Sci Alliance

January 2024

Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK

To identify functional differences between vertebrate clathrin light chains (CLCa or CLCb), phenotypes of mice lacking genes encoding either isoform were characterised. Mice without CLCa displayed 50% neonatal mortality, reduced body weight, reduced fertility, and ∼40% of aged females developed uterine pyometra. Mice lacking CLCb displayed a less severe weight reduction phenotype compared with those lacking CLCa and had no survival or reproductive system defects.

View Article and Find Full Text PDF

Background: Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in the TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD) and intellectual disability. Hamartin (TSC1) and tuberin (TSC2) proteins form a complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. Loss of TSC1 or TSC2 activates mTORC1 that, among several targets, controls protein synthesis by inhibiting translational repressor eIF4E-binding proteins.

View Article and Find Full Text PDF

Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s).

View Article and Find Full Text PDF

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili.

View Article and Find Full Text PDF

Escherichia coli killing by epidemiologically successful sublineages of Shigella sonnei is mediated by colicins.

EBioMedicine

November 2023

Department of Clinical Infection, Microbiology, and Immunology, Institute for Infection, Veterinary, and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom; Department of Genetics, University of Cambridge, Downing Place, Cambridge, UK. Electronic address:

Background: Shigella sp. are enteric pathogens which causes >125 million cases of shigellosis annually. S.

View Article and Find Full Text PDF

Negative DNA supercoiling induces genome-wide Cas9 off-target activity.

Mol Cell

October 2023

Department of Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK; Single Molecule Imaging, MRC-London Institute of Medical Sciences, Du Cane Road, London W12 0HS, UK. Electronic address:

CRISPR-Cas9 is a powerful gene-editing technology; however, off-target activity remains an important consideration for therapeutic applications. We have previously shown that force-stretching DNA induces off-target activity and hypothesized that distortions of the DNA topology in vivo, such as negative DNA supercoiling, could reduce Cas9 specificity. Using single-molecule optical-tweezers, we demonstrate that negative supercoiling λ-DNA induces sequence-specific Cas9 off-target binding at multiple sites, even at low forces.

View Article and Find Full Text PDF

Introducing SimpliPyTEM, a Python library and accompanying GUI that simplifies the post-acquisition evaluation of transmission electron microscopy (TEM) images, helping streamline the workflow. After an imaging session, a folder of image and/or video files, typically containing low contrast and large file size 32-bit images, can be quickly processed via SimpliPyTEM into high-quality, high-contrast.jpg images with suitably sized scale bars.

View Article and Find Full Text PDF

Many proteins remain poorly characterized even in well-studied organisms, presenting a bottleneck for research. We applied phenomics and machine-learning approaches with for broad cues on protein functions. We assayed colony-growth phenotypes to measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different nutrients, drugs, and stresses.

View Article and Find Full Text PDF

Iron plays a vital role in the maintenance of life, being central to various cellular processes, from respiration to gene regulation. It is essential for iron to be stored in a nontoxic and readily available form. DNA binding proteins under starvation (Dps) belong to the ferritin family of iron storage proteins and are adept at storing iron in their hollow protein shells.

View Article and Find Full Text PDF

Viral SERPINS-A Family of Highly Potent Immune-Modulating Therapeutic Proteins.

Biomolecules

September 2023

Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA.

Serine protease inhibitors, SERPINS, are a highly conserved family of proteins that regulate serine proteases in the central coagulation and immune pathways, representing 2-10% of circulating proteins in the blood. Serine proteases form cascades of sequentially activated enzymes that direct thrombosis (clot formation) and thrombolysis (clot dissolution), complement activation in immune responses and also programmed cell death (apoptosis). Virus-derived serpins have co-evolved with mammalian proteases and serpins, developing into highly effective inhibitors of mammalian proteolytic pathways.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism.

View Article and Find Full Text PDF

The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions.

View Article and Find Full Text PDF

Molecular structures are often fitted into cryo-EM maps by flexible fitting. When this requires large conformational changes, identifying rigid bodies can help optimize the model-map fit. Tools for identifying rigid bodies in protein structures exist, however an equivalent for nucleic acid structures is lacking.

View Article and Find Full Text PDF

Unfolding the path to nanopore protein sequencing.

Nat Nanotechnol

November 2023

Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK.

View Article and Find Full Text PDF

Parasite microtubule arrays.

Curr Biol

August 2023

Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, DZIF partner site Heidelberg, Germany. Electronic address:

Microtubules are a key component of eukaryotic cell architecture. Regulation of the dynamic growth and shrinkage of microtubules gives cells their shape, allows cells to swim, and drives the separation of chromosomes. Parasites have developed intriguingly divergent biology, seemingly expanding upon and reinventing microtubule use in fascinating ways.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are comprised of significant numbers of residues that form neither helix, sheet, nor any other canonical type of secondary structure. They play important roles in a broad range of biological processes, such as molecular recognition and signalling, largely due to their chameleon-like ability to change structure from unordered when free in solution to ordered when bound to partner molecules. Circular dichroism (CD) spectroscopy is a widely-used method for characterising protein secondary structures, but analyses of IDPs using CD spectroscopy have suffered because the methods and reference datasets used for the empirical determination of secondary structures do not contain adequate representations of unordered structures.

View Article and Find Full Text PDF

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region.

View Article and Find Full Text PDF