8 results match your criteria: "Institute of Solid Mechanics of Romanian Academy[Affiliation]"

The inverse kinematics problem of exoskeleton rehabilitation robots is challenging due to the lack of a standard analytical model, resulting in a complex and varied solution process. This complexity is especially pronounced in redundant upper limb exoskeleton robots, where inefficient solutions hinder the robot's ability to adapt to the kinematic shape of the upper limb. This paper proposes a modeling and solution method based on multi-objective optimization to address the inverse kinematics of upper limb exoskeleton robots.

View Article and Find Full Text PDF

A stroke is a common disease that can easily lead to lower limb motor dysfunction in the elderly. Stroke survivors can effectively train muscle strength through leg flexion and extension training. However, available lower limb rehabilitation robots ignore the knee soft tissue protection of the elderly in training.

View Article and Find Full Text PDF

Tribological Aspects Concerning the Study of Overhead Crane Brakes.

Materials (Basel)

September 2022

Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka Str. 15-17, 75-620 Koszalin, Poland.

The aim of the study is the tribological analysis of the crane drum brakes. A theoretical analysis of the wear processes for brake lining was performed and the coefficient of friction under tribological conditions was determined experimentally simulating the operating conditions for three types of brakes. The theoretical study of the wear was oriented towards of determining the lifetime of the brake lining.

View Article and Find Full Text PDF

The inverse sonification problem is investigated in this article in order to detect hardly capturing details in a medical image. The direct problem consists in converting the image data into sound signals by a transformation which involves three steps - data, acoustics parameters and sound representations. The inverse problem is reversing back the sound signals into image data.

View Article and Find Full Text PDF

Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.

Sensors (Basel)

October 2019

Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China.

In the process of rehabilitation training for stroke patients, the rehabilitation effect is positively affected by how much physical activity the patients take part in. Most of the signals used to measure the patients' participation are EMG signals or oxygen consumption, which increase the cost and the complexity of the robotic device. In this work, we design a multi-sensor system robot with torque and six-dimensional force sensors to gauge the patients' participation in training.

View Article and Find Full Text PDF

The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture.

View Article and Find Full Text PDF

The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture.

View Article and Find Full Text PDF

Starting from the well-known fact that the rolling movement always has a lower friction compared to sliding friction, the authors have conceived and realized a pivoting movement joint on a "layer of balls" with "compensation space", placed between the acetabular cup and the femoral head. This technical solution allows free self-directed migration of the balls, depending on the resistance opposed, with successive occupation of the "compensation space". As a concept, the proposed technical solution excludes the existence of a cage for maintaining the relative positions of the spheres.

View Article and Find Full Text PDF