56 results match your criteria: "Institute of Scientific Instruments of the CAS[Affiliation]"

Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay H-MRSI sequence (H-FID-MRSI) in the rat brain at 14.

View Article and Find Full Text PDF

Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology.

Clin Neurophysiol

January 2025

Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada; Department of Neurology, Duke University Medical School and Department of Biomedical Engineering, Pratt School of Engineering, 2424 Erwin Road, Durham, NC 27705, the United States of America. Electronic address:

Introduction: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the consistent evaluation of automatic machine learning localization models.

View Article and Find Full Text PDF

CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures.

Sensors (Basel)

September 2024

Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic.

This paper deals with CFD analyses of the difference in the nature of the shock waves in supersonic flow under atmospheric pressure and pressure conditions at the boundary of continuum mechanics for electron microscopy. The first part describes the verification of the CFD analyses in combination with the experimental chamber results and the initial analyses using optical methods at low pressures on the boundary of continuum mechanics that were performed. The second part describes the analyses on an underexpanded nozzle performed to analyze the characteristics of normal shock waves in a pressure range from atmospheric pressure to pressures at the boundary of continuum mechanics.

View Article and Find Full Text PDF

New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized ^{6}LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements.

View Article and Find Full Text PDF

The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190  GeV/c π^{-} beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs).

View Article and Find Full Text PDF

Objective: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process.

View Article and Find Full Text PDF

The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image.

View Article and Find Full Text PDF

A combination of experimental measurement preparations using pressure and temperature sensors in conjunction with the theory of one-dimensional isentropic flow and mathematical physics analyses is presented as a tool for analysis in this paper. Furthermore, the subsequent development of a nozzle for use in environmental electron microscopy between the specimen chamber and the differentially pumped chamber is described. Based on experimental measurements, an analysis of the impact of the nozzle shaping located behind the aperture on the character of the supersonic flow and the resulting dispersion of the electron beam passing through the differential pumped chamber is carried out on the determined pressure ratio using a combination of theory and mathematical physics analyses.

View Article and Find Full Text PDF

This paper describes the methodology of combining experimental measurements with mathematical-physics analyses in the investigation of flow in the aperture and nozzle. The aperture and nozzle separate the differentially pumped chamber from the specimen chamber in an environmental scanning electron microscope (ESEM). Experimental measurements are provided by temperature and pressure sensors that meet the demanding conditions of cryogenic temperature zones and low pressures.

View Article and Find Full Text PDF

Case report: Insulinoma masquerades as epilepsy - quantitative EEG analysis.

Front Neurol

March 2024

First Department of Neurology, St. Anne's University Hospital Brno, Masaryk University, Member of the ERN EpiCARE, Brno, Czechia.

Insulinomas are rare gastrointestinal tumors with an incidence of 1-3 per million inhabitants annually. These tumors result in excessive insulin production, culminating in hypoglycemia. Such hypoglycemia triggers various central nervous system (CNS) manifestations, including headache, confusion, abnormal behavior, and epileptic seizures, which can lead to misdiagnosis as epilepsy.

View Article and Find Full Text PDF

Timing matters for accurate identification of the epileptogenic zone.

Clin Neurophysiol

May 2024

Montreal Neurological Hospital, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Quebec, Canada; Department of Neurology, Duke University Medical School and Department of Biomedical Engineering, Pratt School of Engineering, 2424 Erwin Road, Durham, NC, 27705, USA. Electronic address:

Objective: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG).

Methods: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions.

View Article and Find Full Text PDF

This paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip.

View Article and Find Full Text PDF

Magnetic resonance spectroscopy offers information about metabolite changes in the organism, which can be used in diagnosis. While short echo time proton spectra exhibit more distinguishable metabolites compared with proton spectra acquired with long echo times, their quantification (and providing estimates of metabolite concentrations) is more challenging. They are hampered by a background signal, which originates mainly from macromolecules (MM) and mobile lipids.

View Article and Find Full Text PDF

The article describes the combination of experimental measurements with mathematical-physics analyses in flow investigation in the chambers of the scintillator detector, which is a part of the environmental scanning electron microscope. The chambers are divided with apertures by small openings that keep the desirable pressure differences between three chambers: The specimen chamber, the differentially pumped intermediate chamber, and the scintillator chamber. There are conflicting demands on these apertures.

View Article and Find Full Text PDF

Downsizing the Channel Length of Vertical Organic Electrochemical Transistors.

ACS Appl Mater Interfaces

June 2023

Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization.

View Article and Find Full Text PDF

This paper describes the combination of experimental measurements with mathematical-physical analysis during the investigation of flow in an aperture at low pressures in a prepared experimental chamber. In the first step, experimental measurements of the pressure in the specimen chamber and at its outlet were taken during the pumping of the chamber. This process converted the atmospheric pressure into the operating pressure typical for the current AQUASEM II environmental electron microscope at the ISI of the CAS in Brno.

View Article and Find Full Text PDF

In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment's protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics' lifetime.

View Article and Find Full Text PDF

Electrical discharge machining (EDM) is an unconventional machining technology. It allows machining of at least at least electrically conductive materials. The trend of miniaturization of industrial products is obvious.

View Article and Find Full Text PDF

Pulse wave velocity is a commonly used parameter for evaluating arterial stiffness and the overall condition of the cardiovascular system. The main goal of this study was to establish a methodology to test and validate multichannel bioimpedance as a suitable method for whole-body evaluations of pulse waves. We set the proximal location over the left carotid artery and eight distal locations on both the upper and lower limbs.

View Article and Find Full Text PDF

The purpose of this paper is to find some general rules for the design of robust scintillation electron detectors for a scanning electron microscope (SEM) that possesses an efficient light-guiding (LG) system. The paper offers some general instructions on how to avoid the improper design of highly inefficient LG configurations of the detectors. Attention was paid to the relevant optical properties of the scintillator, light guide, and other components used in the LG part of the scintillation detector.

View Article and Find Full Text PDF

Time-of-flight three-dimensional (3D) imaging has applications that range from industrial inspection to motion tracking. Depth is recovered by measuring the round-trip flight time of laser pulses, typically using collection optics of several centimeters in diameter. We demonstrate near–video-rate 3D imaging through multimode fibers with a total aperture of several hundred micrometers.

View Article and Find Full Text PDF

Pumping in vacuum chambers is part of the field of environmental electron microscopy. These chambers are separated from each other by a small-diameter aperture that creates a critical flow in the supersonic flow regime. The distribution of pressure and shock waves in the path of the primary electron beam passing through the differentially pumped chamber has a large influence on the quality of the resulting microscope image.

View Article and Find Full Text PDF

Energy Harvesting Using Thermocouple and Compressed Air.

Sensors (Basel)

September 2021

Department of Electrical and Electronic Technology, Brno University of Technology, 61100 Brno, Czech Republic.

In this paper, we describe the possibility of using the energy of a compressed air flow, where cryogenic temperatures are achieved within the flow behind the nozzle, when reaching a critical flow in order to maximize the energy gained. Compared to the energy of compressed air, the energy obtained thermoelectrically is negligible, but not zero. We are therefore primarily aiming to maximize the use of available energy sources.

View Article and Find Full Text PDF

Body image disturbances and the attendant negative emotions are two of the major clinical symptoms of eating disorders. The objective of the present experimental study was to shed more light on the degree of association or dissociation between the physiological and emotional response to mirror exposure in patients with restrictive mental anorexia, and on the relationships between the physiological response and characteristics connected with emotional processing. Thirty adolescent girls with the restrictive type of anorexia and thirty matched healthy controls underwent bilateral measurement of skin conductance (SC) during rest, neutral stimulus exposure, and mirror exposure, and completed a set of measures focused on emotion regulation competencies, affectivity, and eating disorder pathology.

View Article and Find Full Text PDF

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel.

View Article and Find Full Text PDF