67 results match your criteria: "Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI)[Affiliation]"

Multiscale Analysis of Sandwich Beams with Polyurethane Foam Core: A Comparative Study of Finite Element Methods and Radial Point Interpolation Method.

Materials (Basel)

September 2024

Department of Mechanical Engineering, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, n. 431, 4200-072 Porto, Portugal.

This study presents a comprehensive multiscale analysis of sandwich beams with a polyurethane foam (PUF) core, delivering a numerical comparison between finite element methods (FEMs) and a meshless method: the radial point interpolation method (RPIM). This work aims to combine RPIM with homogenisation techniques for multiscale analysis, being divided in two phases. In the first phase, bulk PUF material was modified by incorporating circular holes to create PUFs with varying volume fractions.

View Article and Find Full Text PDF

Changing the Mandibular Position in Rowing: A Brief Report of a World-Class Rower.

J Funct Morphol Kinesiol

August 2024

Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.

We investigated the acute biophysical responses of changing the mandibular position during a rowing incremental protocol. A World-class 37-year-old male rower performed two 7 × 3 min ergometer rowing trials, once with no intraoral splint (control) and the other with a mandibular forward repositioning splint (splint condition). Ventilatory, kinematics and body electromyography were evaluated and compared between trials (paired samples -test, ≤ 0.

View Article and Find Full Text PDF

Exploring Bio-Based Polyurethane Adhesives for Eco-Friendly Structural Applications: An Experimental and Numerical Study.

Polymers (Basel)

September 2024

Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness.

View Article and Find Full Text PDF

This study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping capacity. Despite their extensive applications, the understanding of their fracture mechanics behaviour under varying loading rates and temperatures remains limited in the literature. In addition, current prediction models are also unable to accurately predict their behaviour due to the complex failure mechanism that such bonded joints have.

View Article and Find Full Text PDF

While most academic studies focus on the properties of cured joints, this research addresses the manufacturing process of hybrid joints in their uncured state. Hybrid joints that combine adhesive bonding with pre-tensioned bolts exhibit superior mechanical performance compared to exclusively bonded or bolted joints. However, the adhesive flow during manufacturing in hybrid joints often results in a nonuniform adhesive thickness, where obtaining an exact thickness is crucial for accurate load capacity predictions.

View Article and Find Full Text PDF

Design, Manufacturing, and Evaluation of Race and Automotive Prototypal Components Fabricated with Modified Carbon Fibres and Resin.

Polymers (Basel)

July 2024

Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechnique, GR-15773 Athens, Greece.

This study explores the enhancement of Carbon Fibre Reinforced Polymers (CFRPs) for automotive applications through the integration of modified carbon fibres (CF) and epoxy matrices. The research emphasizes the use of block copolymers (BCPs) and electropolymerisation techniques to improve mechanical properties and interfacial adhesion. Incorporating 2.

View Article and Find Full Text PDF

Medical device-related infections (DRIs), especially prevalent among critically ill patients, impose significant health and economic burdens and are mainly caused by bacteria. Severe infections often necessitate device removal when antibiotic therapy is inefficient, delaying recovery. To tackle this issue, PCL drug-eluting coated meshes were explored, and they were printed via melt electrowriting (MEW).

View Article and Find Full Text PDF

Diagnostic Test Accuracy of Urinary DNA Methylation-based Biomarkers for the Detection of Primary and Recurrent Bladder Cancer: A Systematic Review and Meta-analysis.

Eur Urol Focus

June 2024

Cancer Biology & Epigenetics Group, IPO Porto Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal. Electronic address:

Background And Objective: Diagnosis of primary and relapsed bladder carcinomas is accomplished by urethrocystoscopy, an invasive procedure, combined with urinary cytology, with limited sensitivity, resulting in a substantial burden. Thus, noninvasive biomarkers have been investigated, among which DNA methylation has shown promise. This systematic review and meta-analysis sought to assess the diagnostic accuracy of DNA methylation biomarkers reported in the literature for bladder cancer detection, pinpointing the most informative one.

View Article and Find Full Text PDF

Successful pregnancy highly depends on the complex interaction between the uterine body, cervix, and fetal membrane. This interaction is synchronized, usually following a specific sequence in normal vaginal deliveries: (1) cervical ripening, (2) uterine contractions, and (3) rupture of fetal membrane. The complex interaction between the cervix, fetal membrane, and uterine contractions before the onset of labor is investigated using a complete third-trimester gravid model of the uterus, cervix, fetal membrane, and abdomen.

View Article and Find Full Text PDF

This study experimentally investigates the influence of metal chips and glass fibers on the mode I fracture toughness, energy absorption, and tensile strength of polymer concretes (PCs) manufactured by waste aggregates. A substantial portion of the materials employed in manufacturing and enhancing the tested polymer concrete are sourced from waste material. To achieve this, semi-circular bend (SCB) samples were fabricated, both with and without a central crack, to analyze the strength and fracture behavior of the composite specimens.

View Article and Find Full Text PDF

Background: Laparoscopic sacrocolpopexy (LSC) is the gold standard for the treatment of apical prolapse, although dissection of the promontory may be challenging. Laparoscopic lateral suspension (LLS) with mesh is an alternative technique for apical repair with similar anatomical and functional outcomes, according to recent studies. The purpose of this study was to compare these operative techniques.

View Article and Find Full Text PDF

Adhesive bonding has been increasingly employed in multiple industrial applications. This has led to a large industrial demand for faster, simpler, and cheaper characterization methods that allow engineers to predict the mechanical behavior of an adhesive with numerical models. Currently, these characterization processes feature a wide variety of distinct standards, specimen configurations, and testing procedures and require deep knowhow of complex data-reduction schemes.

View Article and Find Full Text PDF

Semiconductor advancements demand greater integrated circuit density, structural miniaturization, and complex material combinations, resulting in stress concentrations from property mismatches. This study investigates the failure in two types of interfaces found in chip packages: silicon-epoxy mold compound (EMC) and polyimide-EMC. These interfaces were subjected to quasi-static and fatigue loading conditions.

View Article and Find Full Text PDF

Relevance of rs920778 and rs12826786 Genetic Variants in Bladder Cancer Risk and Survival.

Cancers (Basel)

January 2024

Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal.

The long non-coding RNA HOX transcript antisense intergenic RNA () is associated with oncogenic features in bladder cancer and is predictive of poor clinical outcomes in patients diagnosed with this disease. In this study, we evaluated the impact of the single nucleotide polymorphisms rs920778 and rs12826786 on bladder cancer risk and survival. This case-control study included 106 bladder cancer patients and 199 cancer-free controls.

View Article and Find Full Text PDF

A Novel Technique for Substrate Toughening in Wood Single Lap Joints Using a Zero-Thickness Bio-Adhesive.

Materials (Basel)

January 2024

Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

In contemporary engineering practices, the utilization of sustainable materials and eco-friendly techniques has gained significant importance. Wooden joints, particularly those created with polyurethan-based bio-adhesives, have garnered significant attention owing to their intrinsic environmental advantages and desirable mechanical properties. In comparison to conventional joining methods, adhesive joints offer distinct benefits such as an enhanced load distribution, reduced stress concentration, and improved aesthetic appeal.

View Article and Find Full Text PDF

Examining crack propagation at the interface of bimaterial components under various conditions is essential for improving the reliability of semiconductor designs. However, the fracture behavior of bimaterial interfaces has been relatively underexplored in the literature, particularly in terms of numerical predictions. Numerical simulations offer vital insights into the evolution of interfacial damage and stress distribution in wafers, showcasing their dependence on material properties.

View Article and Find Full Text PDF

The fetal membranes are an essential mechanical structure for pregnancy, protecting the developing fetus in an amniotic fluid environment and rupturing before birth. In cooperation with the cervix and the uterus, the fetal membranes support the mechanical loads of pregnancy. Structurally, the fetal membranes comprise two main layers: the amnion and the chorion.

View Article and Find Full Text PDF

This study investigates the mixed-mode I/II fracture behavior of O-notched diagonally loaded square plate (DLSP) samples containing an edge crack within the O-notch. This investigation aims to explore the combined effects of loading rate and mode mixity on the fracture properties of steel 304L, utilizing DLSP samples. The DLSP samples, made from strain-hardening steel 304L, were tested at three different loading rates: 1, 50, and 400 mm/min, covering five mode mixities from pure mode I to pure mode II.

View Article and Find Full Text PDF

The use of adhesive bonding in diverse industries such as the automotive and aerospace sectors has grown considerably. In structural construction, adhesive joints provide a unique combination of low structural weight, high strength and stiffness, combined with a relatively simple and easily automated manufacturing method, characteristics that are ideal for the development of modern and highly efficient vehicles. In these applications, ensuring that the failure mode of a bonded joint is cohesive rather than adhesive is important since this failure mode is more controlled and easier to model and to predict.

View Article and Find Full Text PDF

The need for more sustainable adhesive formulations has led to the use of silane-based adhesives in different industrial sectors, such as the automotive industry. In this work, the mechanical properties of a dual cure two-component prototype adhesive which combined silylated polyurethane resin (SPUR) with standard epoxy resin was characterized under quasi-static conditions. The characterization process consisted of tensile bulk testing, to determine the Young's modulus, the tensile strength and the tensile strain to failure.

View Article and Find Full Text PDF

Characterization of Densified Pine Wood and a Zero-Thickness Bio-Based Adhesive for Eco-Friendly Structural Applications.

Materials (Basel)

November 2023

Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

This study investigates a sustainable alternative for composites and adhesives in high-performance industries like civil and automotive. This study pioneers the development and application of a new methodology to characterize a bio-based, zero-thickness adhesive. This method facilitates precise measurements of the adhesive's strength and fracture properties under zero-thickness conditions.

View Article and Find Full Text PDF

Exo Supportive Devices: Summary of Technical Aspects.

Bioengineering (Basel)

November 2023

Associated Laboratory of Energy, Transports and Aeronautics (LAETA), Biomechanic and Health Unity (UBS), Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal.

Human societies have been trying to mitigate the suffering of individuals with physical impairments, with a special effort in the last century. In the 1950s, a new concept arose, finding similarities between animal exoskeletons, and with the goal of medically aiding human movement (for rehabilitation applications). There have been several studies on using exosuits with this purpose in mind.

View Article and Find Full Text PDF

The need for more sustainable adhesive formulations has presented the possibility of using silane-based adhesives in the automotive industry. In this work, a dual-cure two-component silylated polyurethane resin (SPUR) adhesive was tested in single-lap joints, to assess in-joint behaviour at room temperature under quasi-static conditions for aluminium substrates. The effect of two different overlap lengths, 25 and 50 mm, was also considered.

View Article and Find Full Text PDF

The impregnation process of carbon fibres with polymers is challenging to model due to the system's complexity, particularly concerning the following aspects: the complex rheology of the polymeric matrices and the presence of solid, continuous fibres, both with anisotropic properties, and the interaction between solid and fluid, which can change the displacement of fibres into a cyclic dependence. In this work, an interesting approach was considered by setting the fibres as a porous medium whose properties were calculated with microscale/macroscale cycle modelling. In the microscale modelling stage, two main assumptions can be made: (i) a homogeneous distribution with a representative cell or (ii) a stochastic distribution of fibres.

View Article and Find Full Text PDF

Rheological and Mechanical Properties of an Acrylic PSA.

Polymers (Basel)

September 2023

Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions.

View Article and Find Full Text PDF