48 results match your criteria: "Institute of Radiation Physics (IRA)[Affiliation]"

A new method to assess the performance of anti-scatter grids in x-ray projection imaging.

Biomed Phys Eng Express

December 2024

Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Grand-Pré 1, 1007 Lausanne, Switzerland.

This work proposes a new method to assess the performance of radiographic anti-scatter grids (ASGs) without the use of a narrow primary beam, which is difficult to achieve.Three general purpose ASGs were evaluated, two marketed ASGs and a low frequency and high ratio prototype ASG with molybdenum lamellae. A range of high scatter x-ray beams were used in a standardized geometry, with energies ranging from 60 kV to 121 kV, for five beam sizes between 10 × 10 and 30 × 30 cm.

View Article and Find Full Text PDF

Background: The radiation exposure of nuclear medicine personnel, especially concerning extremity doses, has been a significant focus over the past two decades. This study addresses the evolving practice of NM, particularly with the rise of radionuclide therapy and theranostic procedures, which involve a variety of radionuclides such as Ga, Lu, and I. Traditional studies have concentrated on common radioisotopes like Tc, F, and Y, but there is limited data on these radionuclides, which are more and more frequently used.

View Article and Find Full Text PDF

Ultra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure.

View Article and Find Full Text PDF
Article Synopsis
  • * This module has been enhanced over time to boost performance and allow for more detailed simulations in bulk solutions, contributing to understanding early DNA damage and comparing with real experimental data.
  • * The latest advancements and various applications of this module are discussed in the context of the ESA BioRad III Project, showcasing its utility in modeling chemical processes.
View Article and Find Full Text PDF

The metrics used for assessing image quality in computed tomography (CT) do not integrate the influence of temporal resolution. A shortcoming in the assessment of image quality for imaging protocols where motion blur can therefore occur. We developed a method to calculate the temporal resolution of standard CT protocols and introduced a specific spatiotemporal formulation of the non-prewhitening with eye filter (NPWE) model observer to assess the detectability of moving objects as a function of their speed.

View Article and Find Full Text PDF

In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications.

View Article and Find Full Text PDF

Task-based detectability in anatomical background in digital mammography, digital breast tomosynthesis and synthetic mammography.

Phys Med Biol

January 2024

UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium.

Determining the detectability of targets for the different imaging modalities in mammography in the presence of anatomical background noise is challenging. This work proposes a method to compare the image quality and detectability of targets in digital mammography (DM), digital breast tomosynthesis (DBT) and synthetic mammography..

View Article and Find Full Text PDF

Dosimetric and biologic intercomparison between electron and proton FLASH beams.

Radiother Oncol

January 2024

Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva, Geneva, Switzerland. Electronic address:

Background And Purpose: The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at an average dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by eFLASHvs. pFLASH has yet been performed and constitutes the aim of the present study.

View Article and Find Full Text PDF

Upstream of the efficiency of proton or carbon ion beams in cancer therapy, and to optimize hadrontherapy results, we analysed the chemistry of Fricke solutions in track-end of 64-MeV protons and 1.14-GeV carbon ions. An original optical setup is designed to determine the primary track-segment yields along the last millimetres of the ion track with a sub-millimetre resolution.

View Article and Find Full Text PDF

FLASH radiotherapy is a promising approach to cancer treatment that offers several advantages over conventional radiotherapy. With this novel technique, high doses of radiation are delivered in a short period of time, inducing the so-called FLASH effect - a phenomenon characterized by healthy tissue sparing without alteration of tumor control. The mechanisms behind the FLASH effect remain unknown.

View Article and Find Full Text PDF

Dosimetric and biologic intercomparison between electron and proton FLASH beams.

bioRxiv

April 2023

Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Background And Purpose: The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e . pFLASH has yet been performed and constitutes the aim of the present study.

View Article and Find Full Text PDF

Purpose: This paper presents the capabilities of the Geant4-DNA Monte Carlo toolkit to simulate water radiolysis with scavengers using the step-by-step (SBS) or the independent reaction times (IRT) methods. It features two examples of application areas: (1) computing the escape yield of HO following a Co γ-irradiation and (2) computing the oxygen depletion in water irradiated with 1 MeV electrons.

Methods: To ease the implementation of the chemical stage in Geant4-DNA, we developed a user interface that helps define the chemical reactions and set the concentration of scavengers.

View Article and Find Full Text PDF

Background: Acceptance testing and quality assurance (QA) of computed tomography (CT) scans are of great importance to ensure the appropriate performance of the systems. However, current standards and guidelines do not include a dedicated QA program for spectral photon-counting CT (SPCCT), nor adapted tolerance levels.

Purpose: To evaluate the technical performance, in terms of image quality and radiation dose, of the first point-of-care SPCCT for the upper extremities (MARS Extremity 5X120, MARS Bioimaging Ltd.

View Article and Find Full Text PDF

Objectives: To assess image noise, diagnostic performance, and potential for radiation dose reduction of photon-counting detector (PCD) computed tomography (CT) with quantum iterative reconstruction (QIR) in the detection of hypoattenuating and hyperattenuating focal liver lesions compared with energy-integrating detector (EID) CT.

Materials And Methods: A medium-sized anthropomorphic abdominal phantom with liver parenchyma and lesions (diameter, 5-10 mm; hypoattenuating and hyperattenuating from -30 HU to +90 HU at 120 kVp) was used. The phantom was imaged on ( a ) a third-generation dual-source EID-CT (SOMATOM Force, Siemens Healthineers) in the dual-energy mode at 100 and 150 kVp with tin filtration and ( b ) a clinical dual-source PCD-CT at 120 kVp (NAEOTOM Alpha, Siemens).

View Article and Find Full Text PDF

Virtual Noncontrast Abdominal Imaging with Photon-counting Detector CT.

Radiology

October 2022

From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland (V.M., L.J., T.S., S.B., K.H., K.M., H.A., A.E.); and Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland (D.R., P.M.).

Background Accurate CT attenuation and diagnostic quality of virtual noncontrast (VNC) images acquired with photon-counting detector (PCD) CT are needed to replace true noncontrast (TNC) scans. Purpose To assess the attenuation errors and image quality of VNC images from abdominal PCD CT compared with TNC images. Materials and Methods In this retrospective study, consecutive adult patients who underwent a triphasic examination with PCD CT from July 2021 to October 2021 were included.

View Article and Find Full Text PDF

This paper describes the development of a novel medical x-ray imaging system adapted to the needs and constraints of low- and middle-income countries. The developed system is based on an indirect conversion chain: a scintillator plate produces visible light when excited by the x rays, and then, a calibrated multi-camera architecture converts the visible light from the scintillator into a set of digital images. The partial images are then unwarped, enhanced, and stitched through parallel field programmable gate array processing units and specialized software.

View Article and Find Full Text PDF

Quantum Iterative Reconstruction for Low-Dose Ultra-High-Resolution Photon-Counting Detector CT of the Lung.

Diagnostics (Basel)

February 2022

Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland.

The aim of this study was to characterize image quality and to determine the optimal strength levels of a novel iterative reconstruction algorithm (quantum iterative reconstruction, QIR) for low-dose, ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) of the lung. Images were acquired on a clinical dual-source PCD-CT in the UHR mode and reconstructed with a sharp lung reconstruction kernel at different strength levels of QIR (QIR-1 to QIR-4) and without QIR (QIR-off). Noise power spectrum (NPS) and target transfer function (TTF) were analyzed in a cylindrical phantom.

View Article and Find Full Text PDF

A novel method to assess the spatiotemporal image quality in fluoroscopy.

Phys Med Biol

December 2021

Institute of radiation physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Grand-Pré 1, 1007 Lausanne, Switzerland.

. The planar formulation of the noise equivalent quanta (NEQ) and detective quantum efficiency (DQE) used to assess the image quality of projection images does not deal with the influence of temporal resolution on signal blurring and image noise. These metrics require correction factors based on temporal resolution when used for dynamic imaging systems such as fluoroscopy.

View Article and Find Full Text PDF

In this work, we use the next sub-volume method (NSM) to investigate the possibility of using the compartment-based ("on-lattice") model to simulate water radiolysis. We, first, start with a brief description of the reaction-diffusion master equation (RDME) in a spatially discretized simulation volume ("mesh"), which is divided into sub-volumes (or "voxels"). We then discuss the choice of voxel size and merging technique of a given mesh, along with the evolution of the system using the hierarchical algorithm for the RDME ("hRDME").

View Article and Find Full Text PDF

Objectives: To compare deep learning (True Fidelity, TF) and partial model based Iterative Reconstruction (ASiR-V) algorithm for image texture, low contrast lesion detectability and potential dose reduction.

Methods: Anthropomorphic phantoms (mimicking non-overweight and overweight patient), containing lesions of 6 mm in diameter with 20HU contrast, were scanned at five different dose levels (2,6,10,15,20 mGy) on a CT system, using clinical routine protocols for liver lesion detection. Images were reconstructed using ASiR-V 0% (surrogate for FBP), 60 % and TF at low, medium and high strength.

View Article and Find Full Text PDF

Objective: To determine a personalized and optimized contrast injection protocol for a uniform and optimal diagnostic level of liver parenchymal enhancement, in a large patient population enrolled in a multicenter study.

Methods: Six hundred ninety-two patients who underwent a standardized multi-phase liver CT examination were prospectively assigned to one contrast media (CM) protocol group: G1 (100 mL fixed volume, 37 gI); G2 (600 mgI/kg of total body weight (TBW)); G3 (750 mgI/kg of fat-free mass (FFM)), and G4 (600 mgI/kg of FFM). Change in liver parenchyma CT number between unenhanced and contrast-enhanced images was measured by two radiologists, on 3-mm pre-contrast and portal phase axial reconstructions.

View Article and Find Full Text PDF

Nationwide surveys on radiation dose to the population from medical imaging are recommended in order to follow trends in population exposure. The goal of the 2018 survey was to investigate the current exposure. The invoice coding information was collected in five university hospitals and large clinics.

View Article and Find Full Text PDF

Purpose: We aimed to thoroughly characterize image quality of a novel deep learning image reconstruction (DLIR), and investigate its potential for dose reduction in abdominal CT in comparison with filtered back-projection (FBP) and a partial model-based iterative reconstruction (ASiR-V).

Methods: We scanned a phantom at three dose levels: regular (7 mGy), low (3 mGy) and ultra-low (1 mGy). Images were reconstructed using DLIR (low, medium and high levels) and ASiR-V (0% = FBP, 50% and 100%).

View Article and Find Full Text PDF

Background: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing.

Aims: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics.

View Article and Find Full Text PDF

Signal processing is a core part of any electronic chain for radioactivity measurement systems and can influence measurement results drastically. A thorough study of the different alternatives for this treatment is especially worthwhile when developing a new digital system. This article describes an evaluation performed to optimize the digital pulse processing stage of the β-γ coincidence counting system at the Institute of Radiation Physics (IRA) designated laboratory for the activity unit.

View Article and Find Full Text PDF