215 results match your criteria: "Institute of Plant physiology and Genetics[Affiliation]"

In Vitro Anticancer Effects of Aqueous Leaf Extract from L. ssp. .

Life (Basel)

November 2024

Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria.

Despite significant efforts, cancer remains the second leading cause of mortality worldwide. The medicinal plant L. represents a valuable source of biologically active compounds with pharmacological activities including antioxidant, anti-inflammatory, antimicrobial, and antiviral.

View Article and Find Full Text PDF

Numerous experimental studies suggest the potential for resveratrol (RVT) to be useful in the Alzheimer's disease treatment, but its low bioavailability limits its application. This study aimed to assess the potential of resveratrol-loaded micelles as a neuronal delivery platform to protect rats from scopolamine-induced memory impairment. Resveratrol was incorporated into Pluronic micelles, and the effects of micellar (mRVT) and pure resveratrol (RVT) were compared in the model of scopolamine-induced dementia in male Wistar rats.

View Article and Find Full Text PDF

Drought stress affects many aspects of plant biochemistry, with photosynthesis being one the most significantly impaired physiological processes. Melatonin is a natural antioxidant with growth-regulating properties in plants. Its diverse physiological functions have been extensively studied in recent decades.

View Article and Find Full Text PDF

Green algae of the genus have attracted the attention of scientists due to their rich biochemical composition and potential for application in phytomedicine. The present study investigated the influence of light on the bioactive capacity of extracts from the Bulgarian strain of the green microalgae sp. BGV.

View Article and Find Full Text PDF

An in silico redesign of the secondary quinone electron acceptor (Q) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone.

View Article and Find Full Text PDF

Altered Mitochondrial DNA Copy Number and Telomere Length in Patients with Substance Use Disorder: Correlation with Age, Sex, and Chronic Diseases.

Biochem Genet

November 2024

Institute of Plant Physiology and Genetics, Laboratory of Genome Dynamics and Stability, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113, Sofia, Bulgaria.

Substance use disorder (SUD) is a complex condition involving psychological, sociocultural, and genetic factors. In this study, we examined the alternations in mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) and their relationship to demographic, medical, heredity, and substance use characteristics in patients with SUD and healthy controls. We investigated a total cohort of 54 participants: 21 healthy individuals, 17 patients with alcohol dependence (AD), and 16 patients with drug dependence (DD).

View Article and Find Full Text PDF

Acclimation of the Resurrection Plant to Changing Light Conditions.

Plants (Basel)

November 2024

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.

Resurrection plants present an attractive model for studying the mechanisms of desiccation tolerance. In addition to drought, the presence of light during desiccation is extremely dangerous. In the present study, we investigated the effect of light during the desiccation of shade and sun from two different habitats by measuring the changes in electrolyte leakage, malondialdehyde and proline content, and photosynthetic and antioxidant activities.

View Article and Find Full Text PDF

Breast cancer is the second leading cause of death among women, and the number of mortal cases in diagnosed patients is constantly increasing. The search for new plant compounds with antitumor effects is very important because of the side effects of conventional therapy and the development of drug resistance in cancer cells. The use of plant substances in medicine has been well known for centuries, but the exact mechanism of their action is far from being elucidated.

View Article and Find Full Text PDF

Wheat can tolerate a mild water deficit, but prolonged drought causes a number of detrimental physiological changes resulting in a substantial decrease in productivity. The present study evaluates the potential of the natural plant growth regulator melatonin to alleviate the negative effects of moderate drought in two Bulgarian winter wheat cultivars at the early vegetative stage. Melatonin doses of 75 µM were root-supplemented 24 h before or after the stress period.

View Article and Find Full Text PDF

The extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL).

View Article and Find Full Text PDF
Article Synopsis
  • Plant height (PH) is crucial for crop breeding, impacting both straw and grain yield in wheat, and this study aims to enhance understanding of the genetic factors influencing PH by using advanced GWAS techniques on diverse Bulgarian bread wheat varieties.
  • The research identified 25 quantitative trait loci (QTL) related to PH across 14 chromosomes, highlighting 21 environmentally stable quantitative trait nucleotides (QTNs) and novel genomic regions with no previously known associations, which could be significant for future breeding efforts.
  • Noteworthy findings include a haplotype block on chromosome 6A that contains both height-reducing and height-promoting QTN loci, indicating complex genetic interactions and potential pathways
View Article and Find Full Text PDF

Background: inoculation in combination with fungicidal seed treatment is an effective solution for improving soybean resistance to modern climate changes due to the maximum implementation of the plant's stress-protective antioxidant properties and their nitrogen-fixing potential, which will contribute to the preservation of the environment.

Methods: Model ecosystems at different stages of legume-rhizobial symbiosis formation, created by treatment before sowing soybean seeds with a fungicide (fludioxonil, 25 g/L) and inoculation with an active strain of (titer 109 cells per mL), were subjected to microbiological, biochemical, and physiological testing methods in controlled and field conditions.

Results: Seed treatment with fungicide and rhizobia showed different patterns in the dynamics of key antioxidant enzymes in soybean nodules under drought conditions.

View Article and Find Full Text PDF

The aim of the present work was to investigate some of the molecular mechanisms and targets of the anticancer action of the bioflavonoid fustin isolated from the heartwood of Scop. in the triple-negative breast cancer cell line MDA-MB-231. For this purpose, we applied fluorescence microscopy analysis to evaluate apoptosis, necrosis, and mitochondrial integrity, wound healing assay to study fustin antimigratory potential and quantitative reverse transcription-polymerase chain reaction to analyze the expression of genes associated with cell cycle control, programmed cell death, metastasis, and epigenetic alterations.

View Article and Find Full Text PDF

Exopolysaccharides from the Green Microalga Strain sp. BGV-Isolation, Characterization, and Assessment of Anticancer Potential.

Curr Issues Mol Biol

September 2024

Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 25, 1113 Sofia, Bulgaria.

Article Synopsis
  • Algal metabolites, particularly polysaccharides from the green microalga strain BGV, have shown potential as anticancer agents, prompting investigation of their chemical properties and biological effects.
  • The study utilized various analytical techniques to isolate and characterize extracellular polysaccharides (EPS), revealing different molecular weights and key components like galactose, fucose, and uronic acids.
  • EPS demonstrated a significant reduction in the viability of cancerous cell lines HeLa and MCF-7, with enhanced efficacy in the HeLa cell line, and also inhibited cancer cell migration as shown in wound-healing assays.
View Article and Find Full Text PDF

Tomato ( L.) plants, wild type , and carotenoid mutant that accumulates prolycopene instead of all--lycopene were exposed to a combined treatment by low light and low temperature for 5 days. The ability of plants to recover from the stress after development for 3 days at control conditions was followed as well.

View Article and Find Full Text PDF

Nanotechnology is rapidly advancing towards the development of applications for sustainable plant growth and photosynthesis optimization. The nanomaterial/plant interaction has been intensively investigated; however, there is still a gap in knowledge regarding their effect on crop seed development and photosynthetic performance. In the present work, we apply a priming procedure with 10 and 50 mg/L Pluronic-P85-grafted single-walled carbon nanotubes (P85-SWCNT) on garden pea seeds and examine the germination, development, and photosynthetic activity of young seedlings grown on soil substrate.

View Article and Find Full Text PDF

How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response.

Int J Mol Sci

July 2024

Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms.

View Article and Find Full Text PDF

Cytokinins enhance the metabolic activity of in vitro-grown catmint (Nepeta nuda L.).

Plant Physiol Biochem

September 2024

Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria. Electronic address:

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N.

View Article and Find Full Text PDF

Drought is an environmental stressor that significantly impacts plant growth and development. Comprehending the complexity of drought stress and water utilization in the context of plant growth and development holds significant importance for sustainable agriculture. The aim of this study was to evaluate the effect of exogenously applied phytohormones on lettuce ( L.

View Article and Find Full Text PDF

The genetic bases of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have been comprehensively studied, which is not the case for atypical cases not classified into these diagnoses. In the present study, we aim to contribute to the molecular understanding of the development of non-AD and non-FTD dementia due to hyperammonemia caused by mutations in urea cycle genes. The analysis was performed by pooled whole-exome sequencing (WES) of 90 patients and by searching for rare pathogenic variants in autosomal genes for enzymes or transporters of the urea cycle pathway.

View Article and Find Full Text PDF

The potential of to alleviate scopolamine (Sco)-induced deficits in spatial working memory has drawn considerable scientific interest. This effect is partly attributed to its potent antioxidant and acetylcholinesterase inhibitory (AChEI) activities. This study examined the effects of extract, standardized to marrubiin content, on recognition memory in healthy and Sco-treated rats.

View Article and Find Full Text PDF

DNA damage response (DDR), a complex network of cellular pathways that cooperate to sense and repair DNA lesions, is regulated by several mechanisms, including microRNAs. As small, single-stranded RNA molecules, miRNAs post-transcriptionally regulate their target genes by mRNA cleavage or translation inhibition. Knowledge regarding miRNAs influence on DDR-associated genes is still scanty in plants.

View Article and Find Full Text PDF

Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λ 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30.

View Article and Find Full Text PDF

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions.

View Article and Find Full Text PDF

The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from L.

View Article and Find Full Text PDF