581 results match your criteria: "Institute of Plant Sciences Paris-Saclay[Affiliation]"
Plant Physiol Biochem
November 2024
Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France. Electronic address:
Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette, France.
While most epigenomics studies are based on a linear view of genome organization, the necessity to take the three-dimensional chromatin folding into account to understand transcriptional regulation is now clearly recognized. In the past years, approaches combining proximity-based ligation with high-throughput sequencing have opened the way to study long/short-range chromatin interactions and, thus, to analyze 3D chromatin organization. Among them, HiChIP, a protein-based method to capture chromatin interactions, gave rise to the most comprehensive view of the chromatin contacts involving specific chromatin components in a given system.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Nat Commun
October 2024
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay, 91190, Gif sur Yvette, France.
The emergence of commensalism and mutualism often derives from ancestral parasitism. However, in the case of rhizobium-legume interactions, bacterial strains displaying both pathogenic and nodulation features on a single host have not been described yet. Here, we isolated such a bacterium from Medicago nodules.
View Article and Find Full Text PDFCurr Biol
November 2024
Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France. Electronic address:
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability. In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2). Like most land plants, under inorganic phosphate limitation, M.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
Nat Plants
November 2024
Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France.
The mobilization of transposable elements is a potent source of mutations. In plants, several stransposable elements respond to external cues, fuelling the hypothesis that natural transposition can create environmentally sensitive alleles for adaptation. Here we report on the detailed characterization of a retrotransposon insertion within the first intron of the Arabidopsis floral-repressor gene FLOWERING LOCUS C (FLC) and the discovery of its role for adaptation.
View Article and Find Full Text PDFPlant Physiol
December 2024
CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
Thiol-dependent redox regulation of enzyme activities plays a central role in regulating photosynthesis. Besides the regulation of metabolic pathways, alternative electron transport is subjected to thiol-dependent regulation. We investigated the regulation of O2 reduction at photosystem I.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Université Paris-Saclay, CNRS, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay 91405, France.
Seed dormancy corresponds to a reversible blockage of germination. Primary dormancy is established during seed maturation, while secondary dormancy is set up on the dispersed seed, following an exposure to unfavorable factors. Both dormancies are relieved in response to environmental factors, such as light, nitrate, and coldness.
View Article and Find Full Text PDFNat Plants
September 2024
Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institute National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, Orsay, France.
Plant Cell Environ
December 2024
Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
Genotoxic stress activates the DNA-damage response (DDR) signalling cascades responsible for maintaining genome integrity. Downstream DNA repair pathways include the tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine of topoisomerase I (TopI) and 3'-phosphate of DNA. The plant TDP1 subfamily contains the canonical TDP1α gene and the TDP1β gene whose functions are not fully elucidated.
View Article and Find Full Text PDFNucleic Acids Res
October 2024
Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany.
Global warming poses a threat for crops, therefore, the identification of thermotolerance mechanisms is a priority. In plants, the core factors that regulate transcription under heat stress (HS) are well described and include several HS transcription factors (HSFs). Despite the relevance of alternative splicing in HS response and thermotolerance, the core regulators of HS-sensitive alternative splicing have not been identified.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France.
PNAS Nexus
August 2024
INRAE, CNRS, Institute of Plant Sciences Paris-Saclay (IPS2), Univ. Evry, Université Paris-Saclay, Orsay 91405, France.
During the founding of the field of quantitative genetics, Fisher formulated in 1918 his "infinitesimal model" that provided a novel mathematical framework to describe the Mendelian transmission of quantitative traits. If the infinitely many genes in that model are assumed to segregate independently during reproduction, corresponding to having no linkage, directional selection asymptotically leads to a constant genetic gain at each generation. In reality, genes are subject to strong linkage because they lie on chromosomes and thus segregate in a correlated way.
View Article and Find Full Text PDFPlant Cell
October 2024
IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France.
Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA).
View Article and Find Full Text PDFNat Commun
August 2024
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal evolutionary model to study adaptive diversity in wild and domesticated populations. Here, we present a common bean pan-genome based on five high-quality genomes and whole-genome reads representing 339 genotypes.
View Article and Find Full Text PDFTrends Plant Sci
November 2024
APOLO Biotech, Santa Fe de la Vera Cruz, Santa Fe, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina. Electronic address:
Regulating gene expression in plant development and environmental responses is vital for mitigating the effects of climate change on crop growth and productivity. The eukaryotic genome largely shows the canonical B-DNA structure that is organized into nucleosomes with histone modifications shaping the epigenome. Nuclear proteins and RNA interactions influence chromatin conformations and dynamically modulate gene activity.
View Article and Find Full Text PDFNew Phytol
October 2024
Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins.
View Article and Find Full Text PDFPlant Cell
October 2024
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Trends Plant Sci
November 2024
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France. Electronic address:
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality.
View Article and Find Full Text PDFNat Commun
July 2024
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages.
View Article and Find Full Text PDFNat Commun
July 2024
College of Agriculture, National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin, China.
The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2024
Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France; Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Orsay, 91405, France. Electronic address:
In recent years, the study of genome dynamics has become a prominent research field due to its influence on understanding the control of gene expression. The study of 3D genome organization has unveiled multiple mechanisms in orchestrating chromosome folding. Growing evidence reveals that these mechanisms are not only important for genome organization, but play a pivotal role in enabling plants to adapt to environmental stimuli.
View Article and Find Full Text PDFSci Rep
July 2024
National Key Laboratory of Smart Farm Technologies and Systems, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
Mitigating pre-harvest sprouting (PHS) and post-harvest food loss (PHFL) is essential for enhancing food securrity. To reduce food loss, the use of plant derived specialized metabolites can represent a good approach to develop a more eco-friendly agriculture. Here, we have discovered that soybean seeds hidden underground during winter by Tscherskia triton and Apodemus agrarius during winter possess a higher concentration of volatile organic compounds (VOCs) compared to those remaining exposed in fields.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France.
In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato ().
View Article and Find Full Text PDF