7 results match your criteria: "Institute of Plant Production and Protection[Affiliation]"

Analysis of Maillard reaction precursors and secondary metabolites in Chilean potatoes and neoformed contaminants during frying.

Food Chem

December 2024

Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma 2260000, Quillota, Chile.; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile. Electronic address:

Southern Chile native potatoes are an interesting raw material to produce novel snacks like colored potato chips. These novel products should be comprehensively evaluated for the presence of undesirable compounds such as acrylamide, 5-hydroxymethylfurfural and furan, the main neoformed contaminants in starchy rich fried foods. This study evaluated the neoformed contaminant levels and oil content on chips made from eleven Chilean potato accessions and compared them with commercial samples.

View Article and Find Full Text PDF

Global needs for nitrogen fertilizer to improve wheat yield under climate change.

Nat Plants

July 2024

Technical University of Munich, Department of Life Science Engineering, Digital Agriculture, HEF World Agricultural Systems Center, Freising, Germany.

Article Synopsis
  • * Research using advanced wheat simulation models indicates improved wheat genotypes can boost yields by 16% using current nitrogen fertilizer levels.
  • * To reach a potential 52% increase in yield under severe climate change conditions, nitrogen fertilizer use would need to quadruple, which could exacerbate environmental impacts, highlighting the need for better nitrogen management.
View Article and Find Full Text PDF

Enhancing grain yield is a primary goal in the cultivation of major staple crops, including wheat. Recent research has focused on identifying the physiological and molecular factors that influence grain weight, a critical determinant of crop yield. However, a bottleneck has arisen due to the trade-off between grain weight and grain number, whose underlying causes remain elusive.

View Article and Find Full Text PDF

Introduction: Dynamic crop growth models are an important tool to predict complex traits, like crop yield, for modern and future genotypes in their current and evolving environments, as those occurring under climate change. Phenotypic traits are the result of interactions between genetic, environmental, and management factors, and dynamic models are designed to generate the interactions producing phenotypic changes over the growing season. Crop phenotype data are becoming increasingly available at various levels of granularity, both spatially (landscape) and temporally (longitudinal, time-series) from proximal and remote sensing technologies.

View Article and Find Full Text PDF

Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion.

View Article and Find Full Text PDF

Background And Aims: The pericarp weight comprises <17 % of wheat grain weight at harvest. The pericarp supports the hydration and nutrition of both the embryo and endosperm during early grain filling. However, studies of the pericarp and its association with final grain weight have been scarce.

View Article and Find Full Text PDF

Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile.

View Article and Find Full Text PDF