19 results match your criteria: "Institute of Plant Nutrition and Environmental Resources[Affiliation]"

This study investigated the impact of three different fertilization modes (traditional [FP1], one-time application of organic and inorganic fertilizer [FP2], and one-time application of inorganic fertilizer [OPT]) on the quality of japonica rice ( ) during storage under a rice-crab co-culture system. A field study was conducted, with rice samples collected every two months over a one-year storage period for quality analysis. The results showed that protein accumulated with increasing the amount of nitrogen fertilization, whereas amylose content and eating quality showed the opposite trend, further causing changes in rice quality during storage.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional substrate cultivation for vegetable breeding is common, but there's an urgent need to find renewable alternatives.
  • This study evaluates tomato seedling growth using 'Pindstrup' as a control and two types of composite substrates made from fermented corn straw (0-3 mm and 3-5 mm).
  • Results show that the 3-5 mm substrate enhances seedling growth and water retention, with transcriptomic analysis highlighting key genes that support tomato growth and stress response, suggesting a beneficial use of fermented corn straw.
View Article and Find Full Text PDF

Mechanistic insights into nitrogen-induced changes in pasting characteristics of rice during storage based on proteomics analysis.

Food Chem X

December 2023

School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, People's Republic of China.

Nitrogen application delays rice quality deterioration due to changes in its pasting characteristics; however, the underlying mechanisms remain unclear. Using a label-free quantitative proteomics approach, we identified differentially expressed proteins (DEPs) during storage in paddy rice treated with different nitrogen levels. On combining the changes in physiological indicators, high-nitrogen treatment was found to downregulate β-1,3-glucanase, reduce the decomposition of cell wall components, downregulate three proteins involved in starch metabolism, decrease the range of the amylose content and increase the range of the amylopectin, upregulate three proteins related to the lysosomal pathway, and enhance glutelin degradation.

View Article and Find Full Text PDF

Degradation of crop straw in natural environment has been a bottleneck. There has been a recent increase in the exploration of cold-adapted microorganisms as they can solve the problem of corn straw degradation under low temperatures and offer new alternatives for the sustainable development of agriculture. The study was conducted in low-temperature (10°C) and high-efficiency cellulose-degrading bacteria were screened using carboxymethyl cellulose (CMC) selection medium and subjected to genome sequencing by the third-generation Pacbio Sequl and the second-generation Illumina Novaseq platform, and their cellulase activity was detected by 3,5-dinitrosalicylic acid (DNS) method.

View Article and Find Full Text PDF

Ammonia-N accumulation in the rice-crab co-culture system may have negative effects on the health of juvenile Eriocheir sinensis. In this study, physiological, transcriptomic, and metabolomic analyses were performed to explore the toxic responses in the hepatopancreas of juvenile E. sinensis exposed to 0, 0.

View Article and Find Full Text PDF

Metabolic changes and stress damage induced by ammonia exposure in juvenile Eriocheir sinensis.

Ecotoxicol Environ Saf

October 2021

Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110661, China. Electronic address:

The application of nitrogen fertilizers in the rice-crab co-culture system may expose juvenile Eriocheir sinensis to high ammonia concentrations within a short period of time, potentially causing death. Currently, the molecular mechanism underlying ammonia toxicity in juvenile Eriocheir sinensis remains poorly understood. This study compared the effects of 24 h exposure to different total ammonia-N concentrations (0, 10.

View Article and Find Full Text PDF

The effect of nitrogen fertilizer application on the quality of rice post-storage is not well understood. The eating and cooking quality (ECQ) of rice treated with 0 (CK, control), 160 (IN, insufficient nitrogen), 260 (AN, adequate nitrogen), and 420 (EN, excessive nitrogen) kg N/ha was analyzed over 12 months of storage. Results showed that the rate of nitrogen fertilizer application had no significant impact on the changes in taste value during storage.

View Article and Find Full Text PDF

Soil freeze-thaw could affect nitrogen (N) availability. The N transformation is closely related with soil microbes. The effect of soil freeze-thaw on the soil bacterial communities in the temperate zone is still not clear.

View Article and Find Full Text PDF

Urease inhibitor (UI) and nitrification inhibitor (NI) can reduce N losses from agricultural soils but effects of inhibitors on N cycle are unclear. A field experiment was conducted with maize to test effects of UI (N-(n-Butyl) thiophosphoric, NBPT) and NI (3,4-dimethylepyrazolephosphate, DMPP) on N uptake and N-cycling soil microbes. Five treatments were imposed: no N fertilizer input (CK), conventional fertilization (CF) and 80% of urea input with NBPT (80%U+UI), with DMPP (80%U+NI) and with half NBPT and half DMPP (80%U+1/2(UI+NI)).

View Article and Find Full Text PDF

Background: Freeze-thaw influences soil-dissolved nitrogen (N) pools due to variations in bacterial communities in temperate regions. The availability of soil water is important to soil biogeochemical cycles under frozen conditions. However, it is unclear how soil water content (SWC) mediates the effects of freeze-thaw on soil-dissolved N pools and bacterial communities.

View Article and Find Full Text PDF

Rice-crab culture is the characteristic rice ecological breeding model used in the Panjin area of Liaohe River Basin, China, and it can improve the ecological environment and create increased economic benefits. From a food perspective, both rice yield and quality, which are closely related to the fertilization mode, should be considered. However, the effect of different fertilization modes on rice quality has not been comprehensively investigated in this co-culture system.

View Article and Find Full Text PDF

[Effects of Biochar on NO Emission from Four Typical Soils in the North China Plain].

Huan Jing Ke Xue

November 2019

Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, College of Recourses and Environment, Huazhong Agricultural University, Wuhan 430070, China.

As a potential soil conditioner, biochar plays an important role in alleviating greenhouse gas (GHG) emissions. To clarify the influence of biochar on soil NO emissions during the winter wheat seedling stage, four typical soils in the North China Plain (paddy soil, shajiang black soil, cinnamon soil, and fluvo-aquic soil) were adopted for field experiments, and four treatments were set:Control (CK), Fertilizer (NPK), Biochar (BC), and Fertilizer+Biochar (NPK+BC). The results showed that fertilization (NPK) significantly increased the NO emissions of the four soils.

View Article and Find Full Text PDF

In order to study the linkages between straw decomposition rate and the change in soil biological properties after straw addition to different fertilized soils, we collected soils from three long-term fertilization treatments (no-fertilizer, CK; nitrogen, phosphorus, and potassium fertilizers, NPK; NPK plus straw (S), NPKS), and incubated maize straw with these soils at 25°C for 75 days. The average straw carbon dioxide (CO2) emission rate in the CK+straw (S), NPK+S, and NPKS+S treatments was 0.58±0.

View Article and Find Full Text PDF

Freeze-thaw (FT) events can influence soil functions. However, the overall impact of FTs on soil bacterial communities, especially in temperate regions, remains unclear. In this study, soil samples were collected from a midtemperate region in the northeast of China, and three incubation tests were then designed with varied FT amplitudes (i.

View Article and Find Full Text PDF

Fertilization has a large impact on the soil microbial communities, which play pivotal roles in soil biogeochemical cycling and ecological processes. While the effects of changes in nutrient availability due to fertilization on the soil microbial communities have received considerable attention, specific microbial taxa strongly influenced by long-term organic and inorganic fertilization, their potential effects and associations with soil nutrients remain unclear. Here, we use deep 16S amplicon sequencing to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential links between soil nutrient parameters and specific bacterial taxa.

View Article and Find Full Text PDF

Background: The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.

View Article and Find Full Text PDF

Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates.

Sci Rep

August 2016

Liaoning Key Laboratory of Soil Environmental Quality and Agro-product Safety, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS).

View Article and Find Full Text PDF

To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables.

View Article and Find Full Text PDF

Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca(2+) and Mg(2+) but not with K(+) and Na(+).

View Article and Find Full Text PDF