4 results match your criteria: "Institute of Plant Nutrient and Environmental Resources[Affiliation]"

Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation.

View Article and Find Full Text PDF

Canopy nitrogen content in wheat is a key indicator of wheat grain yield and quality. When using remote sensing technology to predict wheat canopy nitrogen content, a hyperspectral mode with high adaptability and high accuracy is needed to improve the inversion efficiency. We developed a new three-band spectral vegetation index (NEW-NDRE) by combining a two-band spectral index NDRE and the spectral reflectance at 550 nm based on field data collected from different sites, years, with different varieties and nitrogen levels and at multiple growth stages.

View Article and Find Full Text PDF

Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

PLoS One

August 2017

Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing 100081, China.

Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.

View Article and Find Full Text PDF

Wastewater contaminated with heavy metals is a world-wide concern. One biological treatment strategy includes filamentous fungi capable of extracellular adsorption and intracellular bioaccumulation. Here we report that an acclimated strain of filamentous fungus Pleurotus ostreatus HAU-2 can withstand Pb up to 1500 mg L(-1) Pb, conditions in which the wildtype strain cannot grow.

View Article and Find Full Text PDF