1,374 results match your criteria: "Institute of Plant Genetics and Crop Plant Research IPK[Affiliation]"

Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes.

View Article and Find Full Text PDF

Enhancing Maize Productivity and Soil Health under Salt Stress through Physiological Adaptation and Metabolic Regulation Using Indigenous Biostimulants.

Plants (Basel)

October 2023

Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-7 CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco.

Salinity poses a persistent threat to agricultural land, continuously jeopardizing global food security. This study aimed to enhance sweet corn (SC) fitness under varying levels of salinity using indigenous biostimulants (BioS) and to assess their impacts on plant performance and soil quality. The experiment included control (0 mM NaCl), moderate stress (MS; 50 mM NaCl), and severe stress (SS; 100 mM NaCl) conditions.

View Article and Find Full Text PDF

Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat ( L.

View Article and Find Full Text PDF

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes.

View Article and Find Full Text PDF

PEP444c encoded within the MIR444c gene regulates microRNA444c accumulation in barley.

Physiol Plant

November 2023

Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.

MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444).

View Article and Find Full Text PDF

Rapeseed is one of the most important agricultural crops and is used in many ways. Due to the advancing climate crisis, the yield potential of rapeseed is increasingly impaired. In addition to changing environmental conditions, the expansion of cultivated areas also favours the infestation of rapeseed with various pests and pathogens.

View Article and Find Full Text PDF

Sedimentation values and falling number in the last decades have helped maintain high baking quality despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation values and falling number in European wheat.

View Article and Find Full Text PDF

Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons.

View Article and Find Full Text PDF

Sphaerobacter thermophilus synthesizes an ω-transaminase (ω-TA) that allows the production of enantiomerically pure β-amino acids. To obtain ω-TA variants with a higher activity and more favorable properties for industrial use, we modified critical amino acid residues either in the catalytic center or in a previously proposed signature motif critical for aromatic β-amino acid ω-TAs. Seventeen different variants of this enzyme were generated and their activity was examined with four β-amino acids and one γ-amino acid, and compared with the wildtype's activity.

View Article and Find Full Text PDF

Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods.

View Article and Find Full Text PDF

Paleogenomics focuses on the recovery, manipulation, and analysis of ancient DNA (aDNA) from historical or long-dead organisms to reconstruct and analyze their genomes. The aDNA is commonly obtained from remains found in paleontological and archaeological sites, conserved in museums, and in other archival collections. collections represent a great source of phenotypic and genotypic information, and their exploitation has allowed for inference and clarification of previously unsolved taxonomic and systematic relationships.

View Article and Find Full Text PDF

Controlling early blight of tomatoes using endophytic bacteria is an eco-friendly and sustainable approach to manage this common fungal disease caused by , and . Endophytic bacteria are microorganisms that live inside plant tissues without causing harm and can help protect the host plant from pathogens. In this work, twenty endophytic bacterial isolates from tomato healthy plants were tested against pathogenic fungal isolates that caused early blight disease .

View Article and Find Full Text PDF

Vegetatively propagating aquatic angiosperms, the Lemnaceae family (duckweeds) represents valuable genetic resources for circular bioeconomics and other sustainable applications. Due to extremely fast growth and laborious cultivation of in vitro collections, duckweeds are an urgent subject for cryopreservation. We developed a robust and fast DMSO-free protocol for duckweed cryopreservation by vitrification.

View Article and Find Full Text PDF

Introducing variations in inflorescence architecture, such as the 'Miracle-Wheat' (Triticum turgidum convar. compositum (L.f.

View Article and Find Full Text PDF

Multi-omics insights into the positive role of strigolactone perception in barley drought response.

BMC Plant Biol

September 2023

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.

Background: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response.

Results: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought.

View Article and Find Full Text PDF

In plant science, the suboptimal match of growing conditions hampers the transfer of knowledge from controlled environments in glasshouses or climate chambers to field environments. Here we present the PhenoSphere, a plant cultivation infrastructure designed to simulate field-like environments in a reproducible manner. To benchmark the PhenoSphere, the effects on plant growth of weather conditions of a single maize growing season and of an averaged season over three years are compared to those of a standard glasshouse and of four years of field trials.

View Article and Find Full Text PDF

In recent years, various automated methods for plant phenotyping addressing roots or shoots have been developed and corresponding platforms have been established to meet the diverse requirements of plant research and breeding. However, most platforms are only either able to phenotype shoots or roots of plants but not both simultaneously. This substantially limits the opportunities offered by a joint assessment of the growth and development dynamics of both organ systems, which are highly interdependent.

View Article and Find Full Text PDF

This article comments on: Selva C, Yang X, Shirley NJ, Whitford R, Baumann U, Tucker MR. 2023. and promote stamen identity to restrict multiple ovary formation in barley.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide prediction is emerging as a vital tool in plant breeding, capable of enhancing the use of genebank material and predicting the performance of various plant genetic resources to support prebreeding efforts.
  • In a study involving barley genetic resources, researchers evaluated different prediction scenarios, finding that combining accessions from two different genebanks significantly improved prediction capabilities compared to using a single-genebank model.
  • The study highlights the challenge posed by genotype × environment interactions (GEIs), but suggests that broader training sets can help mitigate these issues, indicating a promising path for better utilization of global genebank collections.
View Article and Find Full Text PDF

As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition.

View Article and Find Full Text PDF

We demonstrate how an algorithm that uses cheap genetic marker data can ensure the taxonomic assignments of genebank samples are complete, intuitive, and consistent-which enhances their value. To maximise the benefit of genebank resources, accurate and complete taxonomic assignments are imperative. The rise of genebank genomics allows genetic methods to be used to ensure this, but these need to be largely automated since the number of samples dealt with is too great for efficient manual recategorisation, however no clearly optimal method has yet arisen.

View Article and Find Full Text PDF

Eggplant (Solanum melongena) is an important Solanaceous crop, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. Its domestication centers and migration and diversification routes are still a matter of debate. We report the largest georeferenced and genotyped collection to this date for eggplant and its wild relatives, consisting of 3499 accessions from seven worldwide genebanks, originating from 105 countries in five continents.

View Article and Find Full Text PDF

Centromeres are the chromosomal domains, where the kinetochore protein complex is formed, mediating proper segregation of chromosomes during cell division. Although the function of centromeres has remained conserved during evolution, centromeric DNA is highly variable, even in closely related species. In addition, the composition of the kinetochore complexes varies among organisms.

View Article and Find Full Text PDF

Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome.

Chromosome Res

September 2023

Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran.

In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive".

View Article and Find Full Text PDF

The FAIR data principle as a commitment to support long-term research data management is widely accepted in the scientific community. However, although many established infrastructures provide comprehensive and long-term stable services and platforms, a large quantity of research data is still hidden. Currently, high-throughput plant genomics and phenomics technologies are producing research data in abundance, the storage of which is not covered by established core databases.

View Article and Find Full Text PDF