444,968 results match your criteria: "Institute of Plant & Animal Ecology[Affiliation]"

Exploiting the efficient Exo:Cas12i3-5M fusions for robust single and multiplex gene editing in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants.

View Article and Find Full Text PDF

Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

The balance between mating benefits and costs shapes reproductive strategies and life history traits across animal species. For biological control programs, understanding how mating rates influence life history traits is essential for optimising population management and enhancing predator efficacy. This study investigates the impact of mating opportunity availability, delayed mating, and male mating history (copulation frequency) on the lifespan (both sexes), female reproductive traits (duration of oviposition and of pre- and post-oviposition periods, and lifetime oviposition), and offspring quality (egg size and offspring survival) of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), an important biological control agent against spider mites.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.

View Article and Find Full Text PDF

Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).

View Article and Find Full Text PDF

Linn., commonly known as the 'Tree of Sadness' belongs to Oleaceae family. In Ayurvedic, Siddha, Unani, and Homeopathic therapeutic systems, it has been used to treat various conditions, including ulcers, skin diseases, hair loss, piles, liver diseases, rheumatism, and malarial fevers.

View Article and Find Full Text PDF

Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing .

Nano Lett

January 2025

Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.

Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Constructing fecal-derived electrocatalysts for CO upcycling: simultaneously tackling waste and carbon emissions.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).

View Article and Find Full Text PDF

Objective: Different aspects of the functions of free fatty acid (FFA) in seminal plasma and their implications on male fertility are known. However, the profile of FFA in seminal plasma in asthenozoospermic patients following antioxidant therapy has not been studied.

Methods: In this case-control study, the total antioxidant capacity (TAC) and FFA profile of the seminal plasma were determined in 80 patients (29 normozoospermic volunteers and 51 asthenozoospermic men) who were treated with antioxidants for three months.

View Article and Find Full Text PDF

Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.

View Article and Find Full Text PDF

The presence in ecological communities of unfeasible species interactions, termed forbidden links, due to physiological or morphological exploitation barriers has been long debated, but little direct evidence has been found. Forbidden links are likely to make ecological communities less robust to species extinctions, stressing the need to assess their prevalence. Here, we used a dataset of plant-hummingbird interactions, coupled with a Bayesian hierarchical model, to assess the importance of exploitation barriers in determining species interactions.

View Article and Find Full Text PDF

In nature, environmental conditions strongly fluctuate, frequently subjecting plants to periods of immediate photo-oxidative stress. The small molecule ascorbate allows plants to cope with such stress conditions. Ascorbate scavenges reactive oxygen species and enables the rapid and full induction of photoprotective non-photochemical quenching (NPQ).

View Article and Find Full Text PDF

Generation of novel bpm6 and dmr6 mutants with broad-spectrum resistance using a modified CRISPR/Cas9 system in Brassica oleracea.

J Integr Plant Biol

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Using an optimized CRISPR/Cas9 system to knock out the BTB-POZ and MATH domain gene BoBPM6 and the DOWNY MILDEW RESISTANCE 6 gene in Brassica oleracea resulted in new lines with broad-spectrum disease resistance.

View Article and Find Full Text PDF

Solvent-Free Artificial Light-Harvesting System in a Fluid Donor with Highly Efficient Förster Resonance Energy Transfer.

J Phys Chem Lett

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.

View Article and Find Full Text PDF

Suppression of TGA2-Mediated Salicylic Acid Defence by Tomato Yellow Leaf Curl Virus C2 via Disruption of TCP7-Like Transcription Factor Activity in Tobacco.

Plant Cell Environ

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China.

Tomato yellow leaf curl virus (TYLCV) is a significant threat to tomato cultivation globally, transmitted exclusively by the whitefly Bemisia tabaci. While previous research suggests that the TYLCV C2 protein plays a role in fostering mutualistic interactions between the virus and its insect vectors, the specific mechanisms remain unclear. In this study, we show that the C2 protein interferes with the salicylic acid (SA) defence pathway by disrupting TCP7-like transcription factor-mediated regulation of TGA2 expression.

View Article and Find Full Text PDF

Laetrile, known as vitamin B17, is often used interchangeably with amygdalin. Laetrile is a semi-synthesis product of amygdalin, whereas amygdalin is a naturally occurring substance in many plants. Both compounds have a nitrile functional group that, when activated by the intestinal enzyme β-glucosidases, releases hydrogen cyanide.

View Article and Find Full Text PDF

We present a new hierarchical Bayesian method using multilocus genotypes to estimate recent seed and pollen migration rates in a spatially explicit framework that incorporates distance effects separately for each type of dispersal. The method additionally estimates population allelic frequencies, population divergence values, individual inbreeding coefficients, individual maternal and paternal ancestries, and allelic dropout rates. We conduct a numerical simulation analysis that indicates that the method can provide reliable estimates of seed and pollen migration rates and allow accurate inference of spatial effects on migration, at affordable sample sizes (25-50 individuals/population) when population genetic divergence is not low (FST≥0.

View Article and Find Full Text PDF

A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing.

J Cachexia Sarcopenia Muscle

February 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.

Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.

View Article and Find Full Text PDF

Background: Phaseolus lunatus, commonly known as the lima bean, is a leguminous crop cultivated in various regions worldwide. It is native to tropical America and is extensively grown in both tropical and temperate climates. Lima beans are highly nutritious and versatile, serving not only as a food and vegetable, but also as a source of green manure.

View Article and Find Full Text PDF

Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.

View Article and Find Full Text PDF

Traditionally fermented sufu is popular because of its flavor, abundance of nutrients, and long shelf life. However, traditional sufu is difficult to produce via industrial processes because of dominant microorganism attenuation during fermentation. Herein, specific protease-producing strains were isolated from traditional sufu.

View Article and Find Full Text PDF

New insights into freshwater ascomycetes: discovery of novel species in diverse aquatic habitats.

Front Cell Infect Microbiol

January 2025

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.

During investigations of freshwater fungi in Hunan and Yunnan provinces, China, sp. nov. (Nectriaceae), sp.

View Article and Find Full Text PDF