109 results match your criteria: "Institute of Physical Organic Chemistry[Affiliation]"

Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties.

View Article and Find Full Text PDF

The main aim of this study was to determine key factors that regulate fire-retardant effectiveness of intumescent coatings comprising of ammonium polyphosphate, melamine, pentaerythritol, polymer binder. Fulfillment of the research objectives resulted in the development of a coating with R120 fire resistance. The expected service life of the coating is at least 15 years when applied at Z2 type of environmental conditions (indoor use).

View Article and Find Full Text PDF

Alkaloid-based urea derivatives were produced with high yield through the reaction of anabasine and cytisine with isoxazolylphenylcarbamates in boiling benzene. Their antitumor activity, in combination with the commonly used five anticancer drugs, namely cyclophosphane, fluorouracil, etoposide, cisplatin, ribomustine with different mechanisms of action, was investigated. Based on the quantum chemical calculations data and molecular docking, hypotheses have been put forward to explain their mutual influence when affecting C6 rat glioma model cells.

View Article and Find Full Text PDF

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified.

View Article and Find Full Text PDF

Spectroscopic studies on domains and peptides of large proteins are complicated because of the tendency of short peptides to form oligomers in aquatic buffers, but conjugation of a peptide with a carrier protein may be helpful. In this study we approved that a fragment of SK30 peptide from phospholipase A2 domain of VP1 Parvovirus B19 capsid protein (residues: 144-159; 164; 171-183; sequence: SAVDSAARIHDFRYSQLAKLGINPYTHWTVADEELLKNIK) turns from random coil to alpha helix in the acidic medium only in case if it had been conjugated with BSA (through additional N-terminal Cys residue, turning it into CSK31 peptide, and SMCC linker) according to CD-spectroscopy results. In contrast, unconjugated SK30 peptide does not undergo such shift because it forms stable oligomers connected by intermolecular antiparallel beta sheet, according to IR-spectroscopy, CD-spectroscopy, blue native gel electrophoresis and centrifugal ultrafiltration, as, probably, the whole isolated phospholipase domain of VP1 protein does.

View Article and Find Full Text PDF

One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of 8-day-old field pea seedlings (cv.

View Article and Find Full Text PDF

The effect of amphiphilic block copolymer polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG concentration in the polyphenylsulfone (PPSU) casting solution and coagulation bath temperature (CBT) on the structure, separation, and antifouling performance of PPSU ultrafiltration membranes was studied for the first time. According to the phase diagram obtained, PPSU/PEG-PPG-PEG/N-methyl-2-pyrrolidone (NMP) systems are characterized by a narrow miscibility gap. It was found that 20 wt.

View Article and Find Full Text PDF

The presented study is concerned with a new multi-step method to synthesize PtCo/C materials based on composite CoO/C that combines the advantages of different liquid-phase synthesis methods. Based on the results of studying the materials at each stage of synthesis with the TG, XRD, TEM, SEI, TXRF, CV and LSV methods, a detailed overview of the sequential changes in catalyst composition and structure at each stage of the synthesis is presented. The PtCo/C catalyst synthesized with the multi-step method is characterized by a uniform distribution of bimetallic nanoparticles of about 3 nm in size over the surface of the support, which result in its high ESA and ORR activity.

View Article and Find Full Text PDF

Microplastics (MPs) in sludge can affect the ability of biochar-activated peroxymonosulfate (PMS) to degrade antibiotics. In this work, biochar was prepared by mixing sludge and polystyrene (PS) through hydrothermal carbonization (HTC) and high-temperature pyrolysis processes. The resulting biochar was used to activate PMS to degrade ofloxacin (OFX), levofloxacin (LEV), and pefloxacin (PFX).

View Article and Find Full Text PDF

The FeO@SiO@ZnO composite was synthesized via the simultaneous deposition of SiO and ZnO onto pre-prepared FeO nanoparticles. Physicochemical methods (TEM, EDXS, XRD, SEM, FTIR, PL, zeta potential measurements, and low-temperature nitrogen adsorption/desorption) revealed that the simultaneous deposition onto magnetite surfaces, up to 18 nm in size, results in the formation of an amorphous shell composed of a mixture of zinc and silicon oxides. This composite underwent modification to form FeO@SiO@ZnO*, achieved by activation with HO.

View Article and Find Full Text PDF

Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles.

View Article and Find Full Text PDF

One-pot synthesis of tetrahydro-β-carbolines, fused with an isoindole core, was proposed starting from maleic anhydride and azomethines easily available from tryptamines and 3-(hetaryl)acroleins. This sequence includes four key steps: an acylation of the aldimine with maleic anhydride, a Pictet-Spengler cyclization, an intramolecular Diels-Alder reaction, and a concluding [1,3]- shift. As a result, six- or seven-nuclear alkaloid-like heterocyclic systems, containing a benzo[1,2]indolizino[8,7-]indole fragment annulated with furan, thiophene, or pyrrole, are formed in a diastereoselective manner.

View Article and Find Full Text PDF

Simulation of microbial aging biochar in compost is an important index for evaluating the biochar degradation efficiency of antibiotics. In this study, biochar was prepared by adding microplastics (MPs) to sludge, and the degradation effect of biochar/(peroxymonosulfate, PMS) on antibiotics was evaluated during the compost aging process of biochar. After the compost aging of biochars, the antibiotic degradation efficiency of HPBC500, HPBC500 + polystyrene (PS), HPBC900/PMS, and HPBC900 + PS/PMS decreased by 6.

View Article and Find Full Text PDF

Diversely substituted, partially saturated benzo[]isoindole-4-carboxylic acids were synthesized by a new three-component reaction (3CR) starting from cinnamic amines (3-arylallylamines), maleimides, and maleic anhydride. The process consists of -acylation of the amines by maleic anhydride, intramolecular [4 + 2] cycloaddition in vinylarenes (the IMDAV reaction), and the concluding Alder-ene reaction between Diels-Alder intermediates and maleimides. All of the reaction steps proceed in a highly regio- and stereoselective manner, furnishing five adjacent chiral centers and leading to a single diastereoisomer of the title compound.

View Article and Find Full Text PDF

Electrically driven organic laser using integrated OLED pumping.

Nature

September 2023

Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.

Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure. They have been successfully used to make organic light-emitting diodes (OLEDs, now widely found in mobile phone displays and televisions), solar cells, transistors and sensors. However, making electrically driven organic semiconductor lasers is very challenging.

View Article and Find Full Text PDF

Targeting of CRISPR-Cas12a crRNAs into human mitochondria.

Biochimie

February 2024

UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France. Electronic address:

Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a material that has become ubiquitous in the field of organic electronics. It is most commonly used as a hole transport layer (HTL) in optoelectronic devices and can be purchased commercially in various formulations with different properties. Whilst it is a most convenient material to work with, there are stability issues associated with PEDOT:PSS that are detrimental to device stability and these are due to the acidic nature of the PSS component.

View Article and Find Full Text PDF

Chemotherapy is one of the main treatment options for cancer, but it is usually accompanied with negative side effects. The classical drugs combination with synergistic adjuvants can be the solution to this problem, allowing reducing therapeutic dose. Elucidating the mechanism of adjuvant action is of key importance for the selection of the optimal agent.

View Article and Find Full Text PDF

In non-viscous aqueous solutions, the cyanine fluorescent dyes Cy3 and Cy5 have rather low fluorescence efficiency (the fluorescence quantum yields of Cy3 and Cy5 are 0.04 and 0.3, respectively [1, 2]) and short excited state lifetimes due to their structural features.

View Article and Find Full Text PDF

Cutting fluids are the main source of oily wastewater in the metalworking industry. This study deals with the development of antifouling composite hydrophobic membranes for treatment of oily wastewater. The novelty of this study is that a low energy electron-beam deposition technique was applied for a polysulfone (PSf) membrane with a molecular-weight cut-off of 300 kDa, which is promising for use in the treatment of oil-contaminated wastewater, by using polytetrafluoroethylene (PTFE) as target materials.

View Article and Find Full Text PDF

The field of synthetic metals is, and remains, highly influential for the development of organic semiconductor materials. Yet, with the passing of time and the rapid development of conjugated materials in recent years, the link between synthetic metals and organic semiconductors is at risk of being forgotten. This review reflects on one of the key concepts developed in synthetic metals - heteroatom interactions.

View Article and Find Full Text PDF

Evaluation of intramolecular hydrogen bond energies of twenty gossypol imine derivatives was carried out using H NMR spectroscopy and quantum chemistry methods. Gossypol imine derivatives contain various intramolecular hydrogen bonds: O-H⋯O, N-H⋯O, O-H⋯N, C-H⋯O and O-H⋯π. The existence of dienamine and diimine tautomeric forms causes some differences in the intramolecular hydrogen bonding of these compounds.

View Article and Find Full Text PDF

Membrane fouling is a serious issue in membrane technology which cannot be completely avoided but can be diminished. The perspective technique of membrane modification is the introduction of hydrophilic polymers or polyelectrolytes into the coagulation bath during membrane preparation via non-solvent-induced phase separation. The influence of polyacrylic acid (PAA) molecular weight (100,000, 250,000 and 450,000 g·mol) added to the aqueous coagulation bath (0.

View Article and Find Full Text PDF

In this work, a new material for in vitro plant rooting based on highly dispersed polyacrylamide hydrogel (PAAG) enriched with amber powder was synthesized and investigated. PAAG was synthesized by homophase radical polymerization with ground amber addition. Fourier transform infrared spectroscopy (FTIR) and rheological studies were used to characterize the materials.

View Article and Find Full Text PDF

For the first time, biochar was prepared by changing the polystyrene (PS) content in sludge, and the efficiency of antibiotics removal by biochar was evaluated after fermentation aging. Fermentation aging affects the efficiency of antibiotics removal by reducing the specific surface area and active sites of biochar. The antibiotics removal efficiency of different types of biochar after aging decreased by 5.

View Article and Find Full Text PDF