45 results match your criteria: "Institute of Physical Chemistry ''Ilie Murgulescu'' of the Romanian Academy[Affiliation]"

Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.

View Article and Find Full Text PDF

Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.

View Article and Find Full Text PDF

Although the microwave-assisted sol-gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating the as-synthesized materials. The present paper presents a comparative study of Mn-doped ZnO nanopowders prepared by both sol-gel and microwave-assisted sol-gel methods.

View Article and Find Full Text PDF

Methanol oxidation efficiency and resistance to CO poisoning are the most challenging issues associated with direct methanol fuel cells. Much experimental effort has been undertaken, such as generating Pt-based binary and ternary nanoparticles, creating composite substrates, and fabricating nanoparticles with special shapes, to overcome these drawbacks. Our previous experiment showed that ternary PtRuM/C-MWCNT (M = Fe and Co; C-MWCNT = carbon Vulcan-multiwalled carbon nanotube) electrocatalysts exhibited high methanol oxidation activity and tolerance to CO poisoning.

View Article and Find Full Text PDF

MeNPs-PEDOT Composite-Based Detection Platforms for Epinephrine and Quercetin.

Biosensors (Basel)

June 2024

Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Gheorghe, 011061 Bucharest, Romania.

The development of low-cost, sensitive, and simple analytical tools for biomolecule detection in health status monitoring is nowadays a growing research topic. Sensing platforms integrating nanocomposite materials as recognition elements in the monitoring of various biomolecules and biomarkers are addressing this challenging objective. Herein, we have developed electrochemical sensing platforms by means of a novel fabrication procedure for biomolecule detection.

View Article and Find Full Text PDF

New gelatin methacryloyl (GelMA)-strontium-doped nanosize hydroxyapatite (SrHA) composite hydrogel scaffolds were developed using UV photo-crosslinking and 3D printing for bone tissue regeneration, with the controlled delivery capacity of strontium (Sr). While Sr is an effective anti-osteoporotic agent with both anti-resorptive and anabolic properties, it has several important side effects when systemic administration is applied. Multi-layer composite scaffolds for bone tissue regeneration were developed based on the digital light processing (DLP) 3D printing technique through the photopolymerization of GelMA.

View Article and Find Full Text PDF

Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications.

View Article and Find Full Text PDF

A challenge in tissue engineering and the pharmaceutical sector is the development of controlled local release of drugs that raise issues when systemic administration is applied. Strontium is an example of an effective anti-osteoporotic agent, used in treating osteoporosis due to both anti-resorptive and anabolic mechanisms of action. Designing bone scaffolds with a higher capability of promoting bone regeneration is a topical research subject.

View Article and Find Full Text PDF

The adsorption of organic compounds onto metal surfaces holds significant importance across various applications, where understanding the intricate interactions between the compounds and the metal surfaces is indispensable. By using density functional theory calculations, this study investigated the impact of functional groups on the interaction between the thione form of 2-mercaptobenzothiazole (MBT) and the Cu(111) surface. The results indicated that substituting functional groups at the C6 position exerts a dual influence on the covalent and non-covalent interactions (NCI).

View Article and Find Full Text PDF

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis.

View Article and Find Full Text PDF

Ti-aluminosilicate gels were used as supports for the immobilization of Fe, Co, and Ni oxides (5%) by impregnation and synthesis of efficient photocatalysts for the degradation of β-lactam antibiotics from water. Titanium oxide (1 and 2%) was incorporated into the zeolite network by modifying the gel during the zeolitization process. The formation of the zeolite Y structure and its microporous structure were evidenced by X-ray diffraction and N physisorption.

View Article and Find Full Text PDF

Emissive features of flavins (Riboflavin/RF, Flavin MonoNucleotide/FMN and Flavin Adenine Dinucleotide/FAD) labeled native Deoxyribonucleic Acid (DNA) on Polyvinylpyrrolidone (PVP)-coated silver nanoparticles (SNPs), have been studied. The dual emission of flavins in DNA-PVP-coated SNPs systems is strongly influenced by the reaction time and temperature. Changes in the RF emissive features occur as a side effect when DNA is covalently linked hence, the RF destruction depends on DNA damage.

View Article and Find Full Text PDF

The CO conversion to methanol (CO-to-CHOH conversion) is a promising way to resolve greenhouse gas emissions and global energy shortage. Many catalysts are of interest in improving the efficiency of the conversion reaction. The PdCo alloy is a potential catalyst, but no research is available to clarify the CO-to-CHOH reaction mechanism of this alloy.

View Article and Find Full Text PDF

Gas sensors are used to detect gas components in human breath to diagnose diseases, such as cancers. However, choosing suitable two-dimensional materials for gas sensors is a challenge. Germanene can be a good candidate because of its outstanding electronic and structural properties.

View Article and Find Full Text PDF

Comparative Study of MgO Nanopowders Prepared by Different Chemical Methods.

Gels

August 2023

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, "Politehnica" University of Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania.

Magnesium oxide (MgO) was synthesized by three different methods: the sol-gel (SG), microwave-assisted sol-gel (MW), and hydrothermal (HT) methods for comparing the influence of the preparation conditions on the properties of the products. The powders were annealed at 450 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM/HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), BET specific surface area and porosity, photoluminescence, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

Electrochemical Sensing Platform Based on Metal Nanoparticles for Epinephrine and Serotonin.

Biosensors (Basel)

August 2023

Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu Gheorghe, 060042 Bucharest, Romania.

A sensing platform based on nanocomposite materials composed of gold metal nanoparticles (AuNPs) and conducting polymer (CP) matrix has been developed for serotonin and epinephrine detection. The CP-AuNPs nanocomposite materials have been synthesized onto glassy carbon electrodes (GCE) by using novel electrochemical procedures based on sinusoidal currents (SC). The SC procedures ensured good control of the metal nanoparticles distribution, increased electrochemical surface area, and enhanced analytical performance.

View Article and Find Full Text PDF

This paper describes the preparation of new PEG-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles.

View Article and Find Full Text PDF

The present work reports the synthesis of efficient Ti-Au/zeolite Y photocatalysts by different processing of aluminosilicate gel and studies the effect of titania content on the structural, morphological, textural, and optical properties of the materials. The best characteristics of zeolite Y were obtained by aging the synthesis gel in static conditions and mixing the precursors under magnetic stirring. Titania (5, 10, 20%) and gold (1%) species were incorporated in zeolite Y support by the post-synthesis method.

View Article and Find Full Text PDF

ZnO is one of the most studied oxides due to its nontoxic nature and remarkable properties. It has antibacterial and UV-protection properties, high thermal conductivity, and high refractive index. Various ways have been used to synthesize and fabricate coinage metals doped ZnO, but the sol-gel technique has received a lot of interest because of its safety, low cost, and facile deposition equipment.

View Article and Find Full Text PDF

CO capture is a crucial strategy to mitigate global warming and protect a sustainable environment. Metal-organic frameworks with large surface area, high flexibility, and reversible adsorption and desorption of gases are good candidates for CO capture. Among the synthesized metal-organic frameworks, the MIL-88 series has attracted our attention due to their excellent stability.

View Article and Find Full Text PDF

Copper-/Zinc-Doped TiO Nanopowders Synthesized by Microwave-Assisted Sol-Gel Method.

Gels

March 2023

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, "Politehnica" University of Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania.

Using the microwave-assisted sol-gel method, Zn- and Cu-doped TiO nanoparticles with an anatase crystalline structure were prepared. Titanium (IV) butoxide was used as a TiO precursor, with parental alcohol as a solvent and ammonia water as a catalyst. Based on the TG/DTA results, the powders were thermally treated at 500 °C.

View Article and Find Full Text PDF

The activity of the oxygen reduction reaction (ORR) on the cathode is one of the dominant factors in the performance of proton exchange membrane fuel cells. Iron porphyrin has low cost, environmental benignity, and maximum efficiency of metal usage. Therefore, this material can be a promising single-atomic metal dispersion catalyst for fuel cell cathodes.

View Article and Find Full Text PDF

In this paper, we conducted a fundamental study concerning the effect of thermal treatment on the structure and morphology of 2 mol% vanadium doped ZnO nanopowders obtained by microwave assisted sol-gel method (MW). The samples were analyzed by DTA, FTIR, XRD, SEM, and UV-Vis spectroscopy. The DTA results showed that above 500 °C, there was no mass loss in the TG curves, and ZnO crystallization occurred.

View Article and Find Full Text PDF

The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method.

View Article and Find Full Text PDF

For environmental applications, nanosized TiO-based materials are known as the most important photocatalyst and are intensively studied for their advantages such as their higher activity, lower price, and chemical and photoresist properties. Zn or Cu doped TiO nanoparticles with anatase crystalline structure were synthesized by sol-gel process. Titanium (IV) butoxide was used as a TiO precursor, with parental alcohol as a solvent, and a hydrolysing agent (ammonia-containing water) was added to obtain a solution with pH 10.

View Article and Find Full Text PDF