87,161 results match your criteria: "Institute of Photonic & Optoelectronics[Affiliation]"

This 2025 updated consensus outlines the diagnostic strategy for transthyretin amyloid cardiomyopathy (ATTR-CM). Given that ATTR-CM is a significant contributor to heart failure, this article emphasizes the importance of making an early and precise diagnosis, particularly as new therapeutic options become available. Highlighting the critical importance of an early and accurate diagnosis, particularly in light of emerging therapeutic modalities, this consensus underscores the central role of Tc-pyrophosphate (PYP) scintigraphy as a non-invasive diagnostic tool.

View Article and Find Full Text PDF

Pulse Oximetry: 50 Years of Inventions & Discoveries in Biomedical Optics.

J Biomed Opt

June 2024

University of Wisconsin-Madison, College of Engineering, Department of Medical Physics, Madison, Wisconsin, United States.

The editorial introduces the JBO Special Issue on Pulse Oximetry.

View Article and Find Full Text PDF

The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.

View Article and Find Full Text PDF

Ferroelectric Optical Memristors Enabled by Non-Volatile Electro-Optic Effect.

Adv Mater

January 2025

Institute of Modern Optics & Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, P. R. China.

Memristors enable non-volatile memory and neuromorphic computing. Optical memristors are the fundamental element for programmable photonic integrated circuits due to their high-bandwidth computing, low crosstalk, and minimal power consumption. Here, an optical memristor enabled by a non-volatile electro-optic (EO) effect, where refractive index modulation under zero field is realized by deliberate control of domain alignment in the ferroelectric material Pb(MgNb)O-PbTiO(PMN-PT) is proposed.

View Article and Find Full Text PDF

Objective: Survivors of pediatric head and neck rhabdomyosarcoma (HNRMS) are at risk of developing endocrinopathies following local treatment, resulting from radiation damage to the pituitary gland, hypothalamus, or thyroid gland, often at a young age. Our aim was to determine the prevalence of endocrine dysfunction in long-term HNRMS survivors and compare the prevalence of anterior pituitary insufficiency (API) among different local treatment strategies: external beam radiation with photons, external beam radiation with protons, microscopically radical surgery combined with external irradiation, and macroscopic radical surgery combined with brachytherapy.

Design And Methods: Head and neck rhabdomyosarcoma survivors treated between 1993 and 2017, with ≥2 years of follow-up, without recurrent disease or secondary malignancy were eligible for this study.

View Article and Find Full Text PDF

Spectral gamma ray borehole logging data can yield insights into the physical properties of lake sediments, serving as a valuable proxy for assessing climate and environmental changes. The presence of tephra layers resulting from volcanic ash deposition is not related to climate and environmental conditions. As a result, these layers pose challenges when attempting to analyze paleoclimate and environmental time series.

View Article and Find Full Text PDF

Purpose: As the pancreas is a low contrast visibility organ, pancreatic ductal adenocarcinoma detection is challenging due to subtle attenuation differences between tumor and pancreatic parenchyma. Photon counting CT (PCCT) has superior iodine contrast-to-noise ratio than conventional CT and also affords the creation of low keV virtual monoenergetic images, both of which increase adenocarcinoma conspicuity. The purpose therefore was to identify the optimal virtual monoenergy for visualizing PDAC during the pancreatic parenchymal phase of enhancement at PCCT using both quantitative and qualitative analyses.

View Article and Find Full Text PDF

Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal.

Light Sci Appl

January 2025

Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.

Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.

View Article and Find Full Text PDF

Bone tissue, with its complex structure, often necessitates decalcification of the hard tissue for ex vivo morphological studies. The choice of a suitable decalcification method plays a crucial role in preserving desired features and ensuring compatibility with diverse imaging techniques. The search for a universal decalcification method that is suitable for a range of biophotonic analyses remains an ongoing challenge.

View Article and Find Full Text PDF

Background: Urinalysis is a commonly performed test for the diagnosis and prognosis of kidney disease in hospitalized patients. It involves examining the chemical composition of the urine and microscopy to examine the cells and casts. In clinical settings, urinalysis is frequently delayed by several hours after sample collection and held at room temperature.

View Article and Find Full Text PDF

Hidden domain boundary dynamics toward crystalline perfection.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

Structural characterization of pyruvic oxime dioxygenase, a key enzyme in heterotrophic nitrification.

J Bacteriol

January 2025

Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.

Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.

View Article and Find Full Text PDF

Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g.

View Article and Find Full Text PDF

Exceptional points facilitate peculiar dynamics in non-Hermitian systems. Yet, in photonics, they have mainly been studied in the classical realm. In this work, we reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.

View Article and Find Full Text PDF

Electromagnetic wave propagation in three-dimensional (3D) space typically suffers omnidirectional scattering when encountering obstacles. In this study, we used Chern vectors to construct a topological heterostructure, where large-volume nonreciprocal topological transport in 3D is achieved. The shape of the cross section in the heterostructure can be arbitrary designed, and we experimentally observed the distinctive cross-shaped field pattern transport, nonreciprocal energy harvesting, and the remarkable ability of electromagnetic wave to traverse obstacles and abrupt structure changes without encountering reflections in 3D space.

View Article and Find Full Text PDF

Small-molecule organic ice microfibers.

Sci Adv

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.

View Article and Find Full Text PDF

It is well understood that cancer therapies including chemotherapy, tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiation can increase the risk of cardiovascular disease in patients with cancer. This can manifest as a multitude of pathologies including left ventricular dysfunction, myocarditis, cardiomyopathy, accelerated atherosclerosis, and coronary vasospasm. Multimodal cardiac imaging plays a critical role in diagnosing such pathologies by relying on noninvasive tools including echocardiograms, cardiac magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and coronary computed tomography angiography.

View Article and Find Full Text PDF

Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures.

Nano Lett

January 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of the momentum-forbidden IEs in a 30°-twisted MoS/WS heterobilayer. Utilizing the Purcell effect of a compact plasmonic nanocavity boosts the IE emission intensity in the cavity by over 2 orders of magnitude.

View Article and Find Full Text PDF

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Aqueous Alkaline Zinc-Iodine Battery with Two-Electron Transfer.

ACS Nano

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I element cathode and thermodynamically unstable reaction products.

View Article and Find Full Text PDF

Track Deflection Monitoring for Railway Construction Based on Dynamic Brillouin Optical Time-Domain Reflectometry.

Sensors (Basel)

December 2024

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510630, China.

Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.

View Article and Find Full Text PDF

Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.

View Article and Find Full Text PDF