24 results match your criteria: "Institute of Organic Chemistry and Biochemistry (IOCB)[Affiliation]"

The anisotropic nature of charge transport through organic materials requires high control over the self-assembly of the organic materials. This is particularly so for conductive polymers, where transport occurs mainly along the polymers' backbone. Herein, we demonstrate the use of self-assembled monolayers (SAMs) to influence the self-assembly of poly(3-adamantylmethylthiophene).

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation.

View Article and Find Full Text PDF

To better understand the functionality of organic anion transporting polypeptides (OATPs) and to design new ligands, reliable structural data of each OATP is needed. In this work, we used a combination of homology model with molecular dynamics simulations to generate a comprehensive structural dataset, that encompasses a diverse set of OATPs but also their relevant conformations. Our OATP models share a conserved transmembrane helix folding harbouring a druggable binding pocket in the shape of an inner pore.

View Article and Find Full Text PDF

Current approaches to facilitate improved drug delivery to the central nervous system.

Eur J Pharm Biopharm

December 2022

School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland. Electronic address:

Although many pharmaceuticals have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been effectively administered. It is due to the fact that the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) restrict them from crossing the brain to exert biological activity. This article reviews the current approaches aiming to improve penetration across these barriers for effective drug delivery to the CNS.

View Article and Find Full Text PDF

Membrane transporters have a crucial role in compounds' brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood-brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters.

View Article and Find Full Text PDF

One of the greatest challenges with successful pharmaceutical treatments of central nervous system (CNS) diseases is the delivery of drugs into their target sites with appropriate concentrations. For example, the physically tight blood-brain barrier (BBB) effectively blocks compounds from penetrating into the brain, also by the action of metabolizing enzymes and efflux transport mechanisms. However, many endogenous compounds, including both smaller compounds and macromolecules, like amino acids, sugars, vitamins, nucleosides, hormones, steroids, and electrolytes, have their peculiar internalization routes across the BBB.

View Article and Find Full Text PDF

A current issue of antimicrobial therapy is the resistance to treatment with worldwide consequences. Thus, the identification of innovative targets is an intriguing challenge in the drug and development process aimed at newer antimicrobial agents. The state-of-art of anticholera therapy might comprise the reduction of the expression of cholera toxin, which could be reached through the inhibition of carbonic anhydrases expressed in Vibrio cholerae (VchCAα, VchCAβ, and VchCAγ).

View Article and Find Full Text PDF

In this study, we investigated the delivery of synthetic neurosteroids into MCF-7 human breast adenocarcinoma cells via Organic Anionic Transporting Polypeptides (OATPs) (pH 7.4 and 5.5) to identify the structural components required for OATP-mediated cellular uptake and to get insight into brain drug delivery.

View Article and Find Full Text PDF

Efflux transporters, namely ATP-binding cassette (ABC), are one of the primary reasons for cancer chemoresistance and the clinical failure of chemotherapy. Ganciclovir (GCV) is an antiviral agent used in herpes simplex virus thymidine kinase (HSV-TK) gene therapy. In this therapy, HSV-TK gene is delivered together with GCV into cancer cells to activate the phosphorylation process of GCV to active GCV-triphosphate, a DNA polymerase inhibitor.

View Article and Find Full Text PDF

Motivation: Current techniques of protein engineering focus mostly on re-designing small targeted regions or defined structural scaffolds rather than constructing combinatorial libraries of versatile compositions and lengths. This is a missed opportunity because combinatorial libraries are emerging as a vital source of novel functional proteins and are of interest in diverse research areas.

Results: Here, we present a computational tool for Combinatorial Library Design (CoLiDe) offering precise control over protein sequence composition, length and diversity.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid.

View Article and Find Full Text PDF

Shortly after entering the cell, HIV-1 copies its genomic RNA into double-stranded DNA in a process known as reverse transcription. This process starts inside a core consisting of an enclosed lattice of capsid proteins that protect the viral RNA from cytosolic sensors and degradation pathways. To accomplish reverse transcription and integrate cDNA into the host cell genome, the capsid shell needs to be disassembled, or uncoated.

View Article and Find Full Text PDF

Unlabelled: The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging.

View Article and Find Full Text PDF

Current virtual screening tools are fast, but reliable scoring is elusive. Here, we present the 'SQM/COSMO filter', a novel scoring function featuring a quantitative semiempirical quantum mechanical (SQM) description of all types of noncovalent interactions coupled with implicit COSMO solvation. We show unequivocally that it outperforms eight widely used scoring functions.

View Article and Find Full Text PDF

The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor.

View Article and Find Full Text PDF

FAITH - Fast Assembly Inhibitor Test for HIV.

Virology

December 2015

Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic. Electronic address:

Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available.

View Article and Find Full Text PDF

Dissociation energies (D0) of 11 H-bonded and 11 dispersion-bound complexes were calculated as the sum of interaction energies and the change of zero-point vibrational energies (ΔZPVE). The structures of H-bonded complexes were optimized at the RI-MP2/cc-pVTZ level, at which deformation and harmonic ΔZPVE energies were also calculated. The structures of dispersion-bound complexes were optimized at the DFT-D3 level, and harmonic ΔZPVE energies were determined at the same level as well.

View Article and Find Full Text PDF

The calculated properties of substituted carboranes such as dipole moment, polarisability, the magnitude of the σ-hole and the desolvation free energy are compared with these properties in comparable aromatic and cyclic aliphatic organic compounds. Dispersion and charge transfer energies are similar. However, the predicted strength of the halogen bonds with the same electron donor (based on the magnitude of the σ-hole) is larger for neutral C-vertex halogen-substituted carboranes than for their organic counterparts.

View Article and Find Full Text PDF

The effect of halogen-to-hydrogen bond substitution on the binding energetics and biological activity of a human aldose reductase inhibitor has been studied using X-ray crystallography, IC50 measurements, advanced binding free energy calculations, and simulations. The replacement of Br or I atoms by an amine (NH2) group has not induced changes in the original geometry of the complex, which made it possible to study the isolated features of selected noncovalent interactions in a biomolecular complex.

View Article and Find Full Text PDF

A systematic quantum mechanical study of σ-hole (chalcogen, pnicogen, and halogen) bonding in neutral experimentally known closo-heteroboranes is performed. Chalcogens and pnicogens are incorporated in the borane cage, whereas halogens are considered as exo-substituents of dicarbaboranes. The chalcogen and pnicogen atoms in the heteroborane cages have partial positive charge and thus more positive σ-holes.

View Article and Find Full Text PDF

Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution.

Nature

January 2015

1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany.

Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form.

View Article and Find Full Text PDF

Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles.

J Virol

December 2014

Institute of Organic Chemistry and Biochemistry IOCB Research Centre and Gilead Sciences, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic Department of Biotechnology, Institute of Chemical Technology, Technická 5, Prague, Czech Republic

Unlabelled: The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses.

View Article and Find Full Text PDF

QM/MM calculations reveal the different nature of the interaction of two carborane-based sulfamide inhibitors of human carbonic anhydrase II.

J Phys Chem B

December 2013

Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic , v.v.i., Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.

The crystal structures of two novel carborane-sulfamide inhibitors in the complex with human carbonic anhydrase II (hCAII) have been studied using QM/MM calculations. Even though both complexes possess the strongly interacting sulfamide···zinc ion motif, the calculations have revealed the different nature of binding of the carborane parts of the inhibitors. The neutral closo-carborane cage was bound to hCAII mainly via dispersion interactions and formed only very weak dihydrogen bonds.

View Article and Find Full Text PDF

Assembly of immature retroviral particles is a complex process involving interactions of several specific domains of the Gag polyprotein localized mainly within capsid protein (CA), spacer peptide (SP), and nucleocapsid protein (NC). In the present work we focus on the contribution of NC to the oligomerization of CA leading to assembly of Mason-Pfizer monkey virus (M-PMV) and HIV-1. Analyzing in vitro assembly of substitution and deletion mutants of DeltaProCANC, we identified a "spacer-like" sequence (NC(15)) at the M-PMV NC N terminus.

View Article and Find Full Text PDF