13 results match your criteria: "Institute of Neuroscience and Medicine INM-9 and Institute for Advanced Simulations IAS-5[Affiliation]"
Cell Rep
February 2023
Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Internal Medicine B, University of Münster, Albert-Schweitzer Campus 1, 48149 Münster, Germany. Electronic address:
Development of liver fibrosis is paralleled by contraction of hepatic stellate cells (HSCs), the main profibrotic hepatic cells. Yet, little is known about the interplay of neprilysin (NEP) and its substrate neuropeptide Y (NPY), a potent enhancer of contraction, in liver fibrosis. We demonstrate that HSCs are the source of NEP.
View Article and Find Full Text PDFProtein Sci
July 2022
Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG). Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Argentina.
Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays.
View Article and Find Full Text PDFJ Phys Chem B
May 2022
Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.
Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information on intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) by analyzing a previously published 73 μs-long molecular-dynamics (MD) simulation of the protein in explicit solvent.
View Article and Find Full Text PDFInt J Mol Sci
October 2021
Elettra-Sincrotrone Trieste, 34149 Trieste, Italy.
After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy.
View Article and Find Full Text PDFBiophys J
November 2021
Computational Biomedicine, Institute of Neuroscience and Medicine INM-9 and Institute for Advanced Simulations IAS-5, Forschungszentrum Jülich, Jülich, Germany. Electronic address:
In this work, we propose a generalized Langevin equation-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (noninstantaneous) component modeled through a Dirac δ function and a three-parameter Mittag-Leffler type function, respectively. By imposing a specific relationship between the parameters of the three-parameter Mittag-Leffler function, the different dynamical regimes-namely ballistic, subdiffusive, and Brownian, as well as the crossover from one regime to another-are retrieved.
View Article and Find Full Text PDFMolecules
March 2021
Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy.
Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17β-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause.
View Article and Find Full Text PDFMolecules
February 2021
Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Inside hippocampal circuits, neuroplasticity events that individual cells may undergo during synaptic transmissions occur in the form of Long-Term Potentiation (LTP) and Long-Term Depression (LTD). The high density of NMDA receptors expressed on the surface of the dendritic CA1 spines confers to hippocampal CA3-CA1 synapses the ability to easily undergo NMDA-mediated LTP and LTD, which is essential for some forms of explicit learning in mammals. Providing a comprehensive kinetic model that can be used for running computer simulations of the synaptic transmission process is currently a major challenge.
View Article and Find Full Text PDFMolecules
December 2020
Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations. The platform is built on a completely revisited version of our (MERMAID) web server, and it integrates this with other three dedicated services.
View Article and Find Full Text PDFMolecules
September 2020
Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) "Computational biomedicine", Forschungszentrum Jülich, 52425 Jülich, Germany.
The translocator protein (TSPO) is a transmembrane protein present across the three domains of life. Its functional quaternary structure consists of one or more subunits. In mice, the dimer-to-monomer equilibrium is shifted in vitro towards the monomer by adding cholesterol, a natural component of mammalian membranes.
View Article and Find Full Text PDFInt J Mol Sci
July 2020
Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson's disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities.
View Article and Find Full Text PDFChem Rev
May 2016
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo nám. 2, 16610 Prague, Czech Republic.
In the field of noncovalent interactions a new paradigm has recently become popular. It stems from the analysis of molecular electrostatic potentials and introduces a label, which has recently attracted enormous attention. The label is σ-hole, and it was first used in connection with halogens.
View Article and Find Full Text PDFACS Chem Biol
July 2015
†Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Science and IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
The effect of halogen-to-hydrogen bond substitution on the binding energetics and biological activity of a human aldose reductase inhibitor has been studied using X-ray crystallography, IC50 measurements, advanced binding free energy calculations, and simulations. The replacement of Br or I atoms by an amine (NH2) group has not induced changes in the original geometry of the complex, which made it possible to study the isolated features of selected noncovalent interactions in a biomolecular complex.
View Article and Find Full Text PDF