4 results match your criteria: "Institute of NanoEngineering and MicroSystems National Tsing Hua University Hsinchu[Affiliation]"

In light of the swift outspread and considerable mortality, coronavirus disease 2019 (COVID-19) necessitates a rapid screening tool and a precise diagnosis. Saliva is considered as an alternative specimen to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since the viral load is comparable to what are found in a throat and a nasal cavity. The electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) emerges as a promising candidate for salivary COVID-19 tests due to a high sensitivity, a portable configuration, a label-free operation, and a matrix insensitivity.

View Article and Find Full Text PDF

Curcumin has been recognized as an effective anticancer agent. However, due to its hydrophobic property, the cell absorption is not satisfied. Herein, the curcumin nanoparticles were prepared in the presence of polyethylene glycol 6000 (PEG6000) to reduce its elimination by immune system.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmonics have been widely studied for photodetectors in the IR and visible light ranges, but UV applications have been limited due to poor optical materials.
  • A new UV photodetector is created using a single-crystalline aluminum film on gallium nitride, featuring a patterned array of nanoholes that enhances performance, achieving maximum responsivity and detectivity at the UV wavelength of 355 nm.
  • The design allows for a fast response time and a broader detection range, making it one of the best-performing GaN-based photodetectors reported so far.
View Article and Find Full Text PDF

Simulating hydrophobic-hydrophilic composite face with hierarchical porous and fibrous architectures of bone extracellular matrix (ECM) is a key aspect in bone tissue engineering. This study focused on the fabrication of new three-dimensional (3D) scaffolds containing polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA), with and without graphene oxide (GO) nanoparticles using the chemical cross-linking and freeze-drying methods for bone tissue application. The effects of GO on physicochemical features and osteoinduction properties of the scaffolds were evaluated through an in vitro study.

View Article and Find Full Text PDF