1,755 results match your criteria: "Institute of Molecular Physiology[Affiliation]"

The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane.

View Article and Find Full Text PDF

Local cellular interactions during the self-organization of stem cells.

Curr Opin Cell Biol

October 2023

Tissue Biology and Disease Modelling, European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.

Stem cell models for early mammalian development offer new experimental opportunities to access spatio-temporal details of the cell-cell interactions that govern cell differentiation and tissue patterning. This review summarizes recent studies that have used stem cell models to investigate the spatial range of developmental cell-cell communication systems. A key message from these works is that important biochemical signals for cell differentiation in these systems, such as Nodal and fibroblast growth factors (FGFs), often act over short distances of only a few cell diameters.

View Article and Find Full Text PDF
Article Synopsis
  • During cell division, the microtubule cytoskeleton undergoes significant reorganization, which is regulated by the phosphorylation of specific proteins, particularly PRC1.
  • PRC1's phosphorylation states influence how it interacts with microtubules, with CDK1 and PLK1 being key mitotic kinases that affect its binding affinity and recruitment.
  • Research shows that dephosphorylation of PRC1 is necessary for the transition from metaphase to anaphase, providing insights into how phosphorylation changes manage the structure of microtubule networks during cell division.
View Article and Find Full Text PDF

The inner membrane associated protein of 30 kDa (IM30), a member of the endosomal sorting complex required for transport (ESCRT-III) superfamily, is crucially involved in the biogenesis and maintenance of thylakoid membranes in cyanobacteria and chloroplasts. In solution, IM30 assembles into various large oligomeric barrel- or tube-like structures, whereas upon membrane binding it forms large, flat carpet structures. Dynamic localization of the protein in solution, to membranes and changes of the oligomeric states are crucial for its in vivo function.

View Article and Find Full Text PDF

Protocol for validating liquid-liquid phase separation as a driver of membraneless organelle assembly in vitro and in human cells.

STAR Protoc

December 2024

Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany. Electronic address:

Liquid-liquid phase separation (LLPS) of scaffold proteins has often been proposed to drive the biogenesis of membraneless cellular compartments. Here, we present a protocol to link in vitro LLPS propensity to localization in vivo. We describe steps for examining LLPS in vitro in the presence of crowding agents or cytomimetic media.

View Article and Find Full Text PDF

A compound-target pairs dataset: differences between drugs, clinical candidates and other bioactive compounds.

Sci Data

October 2024

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom.

Providing a better understanding of what makes a compound a successful drug candidate is crucial for reducing the high attrition rates in drug discovery. Analyses of the differences between active compounds, clinical candidates and drugs require high-quality datasets. However, most datasets of drug discovery programs are not openly available.

View Article and Find Full Text PDF

Melanoma is a highly malignant tumor, that stands as the most lethal form of skin cancer and is characterized by notable phenotypic plasticity and intratumoral heterogeneity. Melanoma plasticity is involved in tumor growth, metastasis and therapy resistance. Long non-coding RNAs (lncRNAs) could influence plasticity due to their regulatory function.

View Article and Find Full Text PDF

Lights off - Role of bioluminescence for the biology of the biocontrol agent .

iScience

October 2024

Johannes Gutenberg University Mainz, Institute of Molecular Physiology, Microbiology and Biotechnology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.

Article Synopsis
  • Bioluminescence serves key roles in various organisms, but the function of light production in certain terrestrial bacteria is not well understood.
  • The bacteria in question exist in two forms: primary cells that produce bright light and secondary cells that give off a dim light while colonizing different organisms.
  • Research shows that while bioluminescence is important for the primary cells' interactions with insects and nematodes, it is not necessary for the bacteria's survival, making these modified cells useful for scientific assays.
View Article and Find Full Text PDF

Vesicle-inducing protein in plastids 1 (Vipp1) is critical for thylakoid membrane biogenesis and maintenance. Although Vipp1 has recently been identified as a member of the endosomal sorting complexes required for transport III superfamily, it is still unknown how Vipp1 remodels membranes. Here, we present cryo-electron microscopy structures of Synechocystis Vipp1 interacting with membranes: seven structures of helical and stacked-ring assemblies at 5-7-Å resolution engulfing membranes and three carpet structures covering lipid vesicles at ~20-Å resolution using subtomogram averaging.

View Article and Find Full Text PDF

The probing of small molecules with heterocyclic scaffolds covering unexplored chemical space and the evaluation of their biological relevance are essential parts of forward chemical genetics approaches and for the development of potential small-molecule therapeutics. In this study, we profiled sets of chromenopyrazoles (CMPs) and tetrahydroquinolines (THQs), originally developed to target the protein-RNA interaction of LIN28-let-7, in a cell painting assay (CPA) measuring cellular morphological changes. Selected LIN28-inactive CMPs and THQs induced cellular morphological changes to different extents.

View Article and Find Full Text PDF

Adrenergic receptors (ARs) are preferentially expressed by innate lymphocytes such as natural killer (NK) cells. Here, we study the effect of epinephrine-mediated stimulation of the β2-adrenergic receptor (β2AR) on the function of human NK cells. Epinephrine stimulation inhibited early NK cell signaling events and blocked the function of the integrin LFA-1.

View Article and Find Full Text PDF

As cells exit mitosis and enter G1, mitotic chromosomes decompact and transcription is reestablished. Previously, Hi-C studies showed that essentially all interphase 3D genome features including A/B-compartments, TADs, and CTCF loops, are lost during mitosis. However, Hi-C remains insensitive to features such as microcompartments, nested focal interactions between -regulatory elements (CREs).

View Article and Find Full Text PDF

Abnormalities in gamma-aminobutyric acid (GABA)ergic neurotransmission play a role in the pathogenesis of autism, although the mechanisms responsible for alterations in specific brain regions remain unclear. Deficits in social motivation and interactions are core symptoms of autism, likely due to defects in dopaminergic neural pathways. Therefore, investigating the morphology and functional roles of GABAergic neurons within dopaminergic projection areas could elucidate the underlying etiology of autism.

View Article and Find Full Text PDF

The rapid and accurate detection of SARS-CoV-2, particularly its spike receptor-binding domain (S-RBD), was crucial for managing the COVID-19 pandemic. This study presents the development and optimization of two types of aptasensors: quartz crystal microbalance (QCM) and electrochemical sensors, both employing thiol-modified DNA aptamers for S-RBD detection. The QCM aptasensor demonstrated exceptional sensitivity, achieved by optimizing aptamer concentration, buffer composition, and pre-treatment conditions, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Stapled Peptides as Inhibitors of mRNA Deadenylation.

Angew Chem Int Ed Engl

January 2025

Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.

Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails, reducing their stability and translational activity, which is mainly regulated by the CCR4-NOT complex.

View Article and Find Full Text PDF

Elucidating how protein sequence determines the properties of disordered proteins and their phase-separated condensates is a great challenge in computational chemistry, biology, and biophysics. Quantitative molecular dynamics simulations and derived free energy values can in principle capture how a sequence encodes the chemical and biological properties of a protein. These calculations are, however, computationally demanding, even after reducing the representation by coarse-graining; exploring the large spaces of potentially relevant sequences remains a formidable task.

View Article and Find Full Text PDF

High resolution analysis of proteolytic substrate processing.

J Biol Chem

November 2024

Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany. Electronic address:

Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates.

View Article and Find Full Text PDF
Article Synopsis
  • ADP-ribosylation is crucial for many cellular processes but the lack of proper tools has limited our understanding of its signaling network.
  • Recent studies have developed new methods to identify ADP-ribose readers across the entire proteome, overcoming previous challenges.
  • The review highlights these new strategies, their advantages and limitations, and discusses future technological needs for better investigating ADP-ribosylation interactions.
View Article and Find Full Text PDF

Impacts of graphene oxide contamination on a food web: Threats to somatic and reproductive health of organisms.

Ecotoxicol Environ Saf

October 2024

Dental Implant Research Center, Avicenna Health Research Institute, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran. Electronic address:

Contamination of aquatic food webs with nanomaterials poses a significant ecological and human health challenge. Ingestion of nanomaterials alongside food disrupts digestion and impairs physiological processes, with potential consequences for organism fitness and survival. Complex interactions between nanomaterials and biota further exacerbate the issue, influencing life-history strategies and ecosystem dynamics.

View Article and Find Full Text PDF

Oncological diseases represent a significant global health challenge, with high mortality rates. Early detection is crucial for effective treatment, and aptamers, which demonstrate superior specificity and stability compared to antibodies, offer a promising avenue for diagnostic advancement. This study presents the design, development and evaluation of a quartz crystal microbalance (QCM) sensor functionalized with the T2-KK1B10 aptamer for the sensitive and specific detection of Chronic Myeloid Leukemia (CML) K562 cells.

View Article and Find Full Text PDF

Actin filament turnover involves subunits binding to and dissociating from the filament ends, with the pointed end being the primary site of filament disassembly. Several molecules modulate filament turnover, but the underlying mechanisms remain incompletely understood. Here, we present three cryo-EM structures of the F-actin pointed end in the presence and absence of phalloidin or DNase I.

View Article and Find Full Text PDF

Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown.

View Article and Find Full Text PDF

The centromere, a chromosome locus defined by the histone H3-like protein centromeric protein A (CENP-A), promotes assembly of the kinetochore to bind microtubules during cell division. Centromere maintenance requires CENP-A to be actively replenished by dedicated protein machinery in the early G phase of the cell cycle to compensate for its dilution after DNA replication. Cyclin-dependent kinases (CDKs) limit CENP-A deposition to once per cell cycle and function as negative regulators outside of early G.

View Article and Find Full Text PDF

How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops.

View Article and Find Full Text PDF