97 results match your criteria: "Institute of Molecular Biology and Tumor Research IMT[Affiliation]"

The peritoneal fluid of ovarian carcinoma patients promotes cancer cell invasion and metastatic spread with lysophosphatidic acid (LPA) as a potentially crucial mediator. However, the origin of LPA in ascites and the clinical relevance of individual LPA species have not been addressed. Here, we show that the levels of multiple acyl-LPA species are strongly elevated in ascites versus plasma and are associated with short relapse-free survival.

View Article and Find Full Text PDF

Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding.

View Article and Find Full Text PDF

DYRK1B regulates Hedgehog-induced microtubule acetylation.

Cell Mol Life Sci

January 2019

Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immune Biology (ZTI), Philipps University, Hans-Meerwein-Str. 3, 35043, Marburg, Germany.

The posttranslational modification (PTM) of tubulin subunits is important for the physiological functions of the microtubule (MT) cytoskeleton. Although major advances have been made in the identification of enzymes carrying out MT-PTMs, little knowledge is available on how intercellular signaling molecules and their associated pathways regulate MT-PTM-dependent processes inside signal-receiving cells. Here we show that Hedgehog (Hh) signaling, a paradigmatic intercellular signaling system, affects the MT acetylation state in mammalian cells.

View Article and Find Full Text PDF

The gut microbiota produces metabolites such as short-chain fatty acids (SCFAs) that regulate the energy homeostasis and impact on immune cell function of the host. Recently, innovative approaches based on the oral administration of SCFAs have been discussed for therapeutic modification of inflammatory immune responses in autoimmune diseases. So far, most studies have investigated the SCFA-mediated effects on CD4 T cells and antigen presenting cells.

View Article and Find Full Text PDF

The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene.

View Article and Find Full Text PDF

Enhancer-driven transcriptional regulation is a potential key determinant for human visceral and subcutaneous adipocytes.

Biochim Biophys Acta Gene Regul Mech

June 2018

Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany; Department of General and Visceral Surgery, Kreisklinikum Siegen, Siegen, Germany.

Obesity is characterized by the excess of body fat leading to impaired health. Abdominal fat is particularly harmful and is associated with cardiovascular and metabolic diseases and cancer. In contrast, subcutaneous fat is generally considered less detrimental.

View Article and Find Full Text PDF

MYB induces the expression of the oncogenic corepressor SKI in acute myeloid leukemia.

Oncotarget

April 2018

Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.

Acute myeloid leukemia (AML) arises through clonal expansion of transformed myeloid progenitor cells. The proto-oncogene is highly upregulated in different solid tumors and leukemic cells, but little is known about its transcriptional regulation during leukemogenesis. MYB is an important hematopoietic transcription factor involved in proliferation as well as differentiation and upregulated in most human acute leukemias.

View Article and Find Full Text PDF

Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control.

J Dev Biol

November 2017

Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.

Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest.

View Article and Find Full Text PDF

Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1.

Nucleic Acids Res

April 2018

Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany.

SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells.

View Article and Find Full Text PDF

Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood.

View Article and Find Full Text PDF

Protein arginine methyltransferase 4 (PRMT4) is an essential epigenetic regulator of fundamental and conserved processes during vertebrate development, such as pluripotency and differentiation. Surprisingly, PRMT4 homologs have been identified in nearly all vertebrate classes except the avian genome. This raises the possibility that in birds PRMT4 functions are taken over by other PRMT family members.

View Article and Find Full Text PDF

Proteotranscriptomics Reveal Signaling Networks in the Ovarian Cancer Microenvironment.

Mol Cell Proteomics

February 2018

¶Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany 35043;

Ovarian cancer is characterized by early transcoelomic metastatic spread via the peritoneal fluid, where tumor cell spheroids (TU), tumor-associated T cells (TAT), and macrophages (TAM) create a unique microenvironment promoting cancer progression, chemoresistance, and immunosuppression. However, the underlying signaling mechanisms remain largely obscure. To chart these signaling networks, we performed comprehensive proteomic and transcriptomic analyses of TU, TAT, and TAM from ascites of ovarian cancer patients.

View Article and Find Full Text PDF

The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer.

View Article and Find Full Text PDF

Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients.

BMC Genomics

March 2017

Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.

Background: Although tumor-associated macrophages (TAMs) are essential for cancer progression, connections between different clinical outcomes and transcriptional networks have not been reported. We have addressed this issue by analyzing global expression patterns of TAMs isolated from the ascites of ovarian cancer patients.

Results: TAMs isolated from different ovarian cancer patients can be stratified by coexpression or principal component analysis into subgroups with specific biological features and associated with distinct clinical outcomes.

View Article and Find Full Text PDF

Pirfenidone is an antifibrotic drug, recently approved for the treatment of patients with idiopathic pulmonary fibrosis (IPF). Although pirfenidone exhibits anti-inflammatory, antioxidant, and antifibrotic properties, the molecular mechanism underlying its protective effects remains unknown. Here, we link pirfenidone action with the regulation of the profibrotic hedgehog (Hh) signaling pathway.

View Article and Find Full Text PDF

DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway.

Oncotarget

January 2017

Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany.

Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation.

View Article and Find Full Text PDF

Oligodendrocytes and Schwann cells are the myelinating glia of the vertebrate nervous system and by generation of myelin sheaths allow rapid saltatory conduction. Previous in vitro work had pointed to a role of the zinc finger containing specificity proteins Sp1 and Sp3 as major regulators of glial differentiation and myelination. Here, we asked whether such a role is also evident in vivo using mice with specific deletions of Sp1 or Sp3 in myelinating glia.

View Article and Find Full Text PDF

Lysophosphatidylcholines activate PPARδ and protect human skeletal muscle cells from lipotoxicity.

Biochim Biophys Acta

December 2016

Division of Pathobiochemistry and Clinical Chemistry, University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany. Electronic address:

Metabolomics studies of human plasma demonstrate a correlation of lower plasma lysophosphatidylcholines (LPC) concentrations with insulin resistance, obesity, and inflammation. This relationship is not unraveled on a molecular level. Here we investigated the effects of the abundant LPC(16:0) and LPC(18:1) on human skeletal muscle cells differentiated to myotubes.

View Article and Find Full Text PDF

NF-Y and SP transcription factors - New insights in a long-standing liaison.

Biochim Biophys Acta Gene Regul Mech

May 2017

Institute of Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Emil-Mannkopff-Str. 2, D-35032-Marburg, Germany. Electronic address:

For long it has been recognized that CCAAT boxes and GC-rich elements co-occur in many human and murine promoters within 100bp upstream of the transcription start site. The trimeric transcription factor NF-Y is the major CCAAT box-binding factor, and members of the SP family of transcription factors are the major GC box-binding proteins. Recent chromatin immunoprecipitations coupled with high throughput sequencing (ChIP-seq) have examined binding of NF-Y and the ubiquitous SP factors SP1, SP2 and SP3 genome-wide, allowing for comprehensive comparison of NF-Y and SP factor actions in the context of chromatin.

View Article and Find Full Text PDF

The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization.

Oncotarget

November 2016

Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.

Macrophages occur as resident cells of fetal origin or as infiltrating blood monocyte-derived cells. Despite the critical role of tumor-associated macrophages (TAMs) in tumor progression, the contribution of these developmentally and functionally distinct macrophage subsets and their alteration by the tumor microenvironment are poorly understood. We have addressed this question by comparing TAMs from human ovarian carcinoma ascites, resident peritoneal macrophages (pMPHs) and monocyte-derived macrophages (MDMs).

View Article and Find Full Text PDF

A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome.

Genome Biol

May 2016

Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, Hans-Meerwein-Str. 3, Marburg, 35043, Germany.

Background: Soluble protein and lipid mediators play essential roles in the tumor environment, but their cellular origins, targets, and clinical relevance are only partially known. We have addressed this question for the most abundant cell types in human ovarian carcinoma ascites, namely tumor cells and tumor-associated macrophages.

Results: Transcriptome-derived datasets were adjusted for errors caused by contaminating cell types by an algorithm using expression data derived from pure cell types as references.

View Article and Find Full Text PDF

The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters.

View Article and Find Full Text PDF

DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells.

View Article and Find Full Text PDF

Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1.

Nat Commun

August 2015

Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany.

The Down syndrome-associated DYRK1A kinase has been reported as a stimulator of the developmentally important Hedgehog (Hh) pathway, but cells from Down syndrome patients paradoxically display reduced Hh signalling activity. Here we find that DYRK1A stimulates GLI transcription factor activity through phosphorylation of general nuclear localization clusters. In contrast, in vivo and in vitro experiments reveal that DYRK1A kinase can also function as an inhibitor of endogenous Hh signalling by negatively regulating ABLIM proteins, the actin cytoskeleton and the transcriptional co-activator MKL1 (MAL).

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516.

View Article and Find Full Text PDF