1,706 results match your criteria: "Institute of Molecular Biology and Genetics.[Affiliation]"

Article Synopsis
  • Epitranscriptomic features, like single-base RNA editing, contribute to transcript diversity in cancer, but their spatial context in tumors is poorly understood.
  • The study introduces a method called Select-seq, which combines spatial-histopathological examination with transcriptomic sequencing to analyze regions of interest in tissue samples.
  • Using Select-seq, researchers focus on cancer stem cell-like microniches in triple-negative breast cancer to identify alternative splice variants and specific RNA editing patterns, particularly adenosine-to-inosine changes unique to different microniche groups.
View Article and Find Full Text PDF

At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of quantum-mechanical theory, we provide for the first time a comprehensive investigation of the physico-chemical mechanisms of the 55 conformational transformations of the biologically-important G·C nucleobase pairs - Watson-Crick (WC), reverse Watson-Crick (rWC), Hoogsteen (H), reverse Hoogsteen (rH), wobble (w) and reverse wobble (rw) base pairs by the participation of the G and C bases in the canonical and rare tautomeric forms ("r" - means reverse configuration of the base pair). It was established that all these G·C nucleobase pairs can conformationally transform into each other without the changing of the tautomeric status of the G and C bases. These transitions occur through significantly non-planar transition states the mutual rotation of the G and C bases relative to each other within the G·C nucleobase pair around the upper, middle or lower intermolecular H-bonds: WC ↔ rWC, WC ↔ rw, rWC ↔ WC, rWC ↔ w, w ↔ rw, H ↔ rH, H ↔ rw, rH ↔ H, rH ↔ w, w ↔ rw.

View Article and Find Full Text PDF

Hepatic GSK3β-Dependent CRY1 Degradation Contributes to Diabetic Hyperglycemia.

Diabetes

July 2022

Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.

Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown.

View Article and Find Full Text PDF

As the principal means of acquiring nutrients, feeding behavior is indispensable to the survival and well-being of animals. In response to energy or nutrient deficits, animals seek and consume food to maintain energy homeostasis. On the other hand, even when animals are calorically replete, non-homeostatic factors, such as the sight, smell, and taste of palatable food, or environmental cues that predict food, can stimulate feeding behavior.

View Article and Find Full Text PDF

Hematopoiesis occurs within a unique bone marrow (BM) microenvironment, which consists of various niche cells, cytokines, growth factors, and extracellular matrix components. These multiple components directly or indirectly regulate the maintenance and differentiation of hematopoietic stem cells (HSCs). Here we report that BAP1 in BM mesenchymal stromal cells (MSCs) is critical for the maintenance of HSCs and B lymphopoiesis.

View Article and Find Full Text PDF

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM.

View Article and Find Full Text PDF

Accumulation of uremic toxins may lead to the life-threatening condition "uremic syndrome" in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)--methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer.

View Article and Find Full Text PDF

The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization.

Cell Rep

April 2022

Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea. Electronic address:

Cilia are important for the interaction with environments and the proper function of tissues. While the basic structure of cilia is well conserved, ciliated cells have various functions. To understand the distinctive identities of ciliated cells, the identification of cell-specific proteins and its regulation is essential.

View Article and Find Full Text PDF

SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity.

Cell Metab

May 2022

Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea. Electronic address:

Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability.

View Article and Find Full Text PDF

A major paradigm in nephrology states that the loss of filtration function over a long time is driven by a persistent hyperfiltration state of surviving nephrons. This hyperfiltration may derive from circulating immunological factors. However, some clue about the hemodynamic effects of these factors derives from the effects of so-called nephroprotective drugs.

View Article and Find Full Text PDF

Several regiospecific enantiomers of hydroxy-()-equol (HE) were enzymatically synthesized from daidzein and genistein using consecutive reduction (four daidzein-to-equol-converting reductases) and oxidation (4-hydroxyphenylacetate 3-monooxygenase, HpaBC). Despite the natural occurrence of several HEs, most of them had not been studied owing to the lack of their preparation methods. Herein, the one-pot synthesis pathway of 6-hydroxyequol (6HE) was developed using HpaBC (HpaB) from and ()-equol-producing , previously developed by our group.

View Article and Find Full Text PDF

Renal micropuncture, which requires the direct access to the renal tubules, has for long time been the technique of choice to measure the single nephron glomerular filtration rate (SNGFR) in animal models. This approach is challenging by virtue of complex animal preparation and numerous technically difficult steps. The introduction of intravital multiphoton microscopy (MPM) offers another approach to the measure of the SNGFR by mean of the high laser-tissue penetration and the optical sectioning capacity.

View Article and Find Full Text PDF

The Space-Exposed Kombucha Microbial Community Member Showed Only Minor Changes in Its Genome After Reactivation on Earth.

Front Microbiol

March 2022

Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.

is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of under extraterrestrial conditions during a long time.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is aggressive and despite multiple clinical trials, its standard of care is unchanged for the past three decades. In vitro cancer models are crucial in chemotherapy development, and three-dimensional (3D) models aim to bridge the gap between two-dimensional (2D) flat cultures and in vivo testing. Functional 3D spheroids can better represent the in vivo situation and tumor characteristics than 2D models.

View Article and Find Full Text PDF

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes.

View Article and Find Full Text PDF

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment.

View Article and Find Full Text PDF

Epstein-Barr virus is a DNA-containing virus that, according to current data, is associated with approximately 1% of all cancers in the world. This viral effect on the human body is associated with its pronounced antiapoptotic activity. An important role in this process is played by the protein BHRF1, which is a structural and functional homologue of antiapoptotic proteins of the BCL-2 family.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary diseases, and it is associated with fatal complications. The clinical heterogeneity of HCM requires risk prediction models to identify patients at a high risk of adverse events. Most HCM cases are caused by mutations in genes encoding sarcomere proteins.

View Article and Find Full Text PDF

Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control.

Redox Biol

May 2022

Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. Electronic address:

Mitochondrial quality control (MQC) consists of multiple processes: the prevention of mitochondrial oxidative damage, the elimination of damaged mitochondria via mitophagy and mitochondrial fusion and fission. Several studies proved that MQC impairment causes a plethora of pathological conditions including cardiovascular diseases. However, the precise molecular mechanism by which MQC reverses mitochondrial dysfunction, especially in the heart, is unclear.

View Article and Find Full Text PDF

Sleep Hungry for Cellular Cleanup! Circadian autophagy modulates fruit fly lifespan.

Mol Cells

February 2022

Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea.

View Article and Find Full Text PDF

Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes.

View Article and Find Full Text PDF

Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing.

J Biomed Mater Res B Appl Biomater

August 2022

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment.

View Article and Find Full Text PDF

We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using polymerization.

View Article and Find Full Text PDF

The paper is devoted to the extension of Brown's model of enzyme kinetics to the case with distributed delays. Firstly, we construct a multi-substrate multi-inhibitor model using discrete and distributed delays. Furthermore, we consider simplified models including one substrate and one inhibitor, for which an experimental study has been performed.

View Article and Find Full Text PDF

Introduction: The emergence of a new member of the Coronaviridae family, which caused the 2020 pandemic, requires detailed research on the evolution of coronaviruses, their structure and properties, and interaction with cells. Modern nanobiotechnologies can address the many clinical challenges posed by the COVID-19 pandemic. In particular, they offer new therapeutic approaches using biocompatible nanostructures with "specific" antiviral activity.

View Article and Find Full Text PDF