16 results match your criteria: "Institute of Molecular Bioimaging and Physiology-National Research Council[Affiliation]"

Association of Body Mass Index and Parkinson Disease: A Bidirectional Mendelian Randomization Study.

Neurology

August 2024

From the Université Paris-Saclay (C.D., P.-E.S., B.P., A.E.), UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Centre for Genetic Epidemiology (A.A.K.S., M.S.), Institute for Clinical Epidemiology and Applied Biometry, and Department for Neurodegenerative Diseases (C.S., K.B., T.G.), Hertie Institute for Clinical Brain Research, University of Tubingen; German Center for Neurodegenerative Diseases (DZNE) (C.S., K.B., T.G.), Tubingen; Center for Human Genetics (S.G.), Universitatsklinikum Giessen und Marburg, Germany; Department of Public Health (P.-C.L.), National Cheng Kung University, Tainan, Taiwan; Translational Neuroscience (P.M., D.B., R.K.), Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval; Institute of Human Genetics (M.R.B., P.L.), Helmholtz Zentrum München, Neuherberg, Germany; Molecular Genetics Section (A.B.S., D.H., C.E.), Laboratory of Neurogenetics, and Center for Alzheimer's and Related Dementias (A.B.S.), NIA, NIH, Bethesda, MD; Griffith Institute for Drug Discovery (G.D.M.), Griffith University, Nathan, Australia; Department of Neurology (A.A.Z.), Medical University of Vienna; Department of Neurology (W.P.), Wilhelminenspital, Austria; Tanz Centre for Research in Neurodegenerative Diseases (E.A.R., A.E.L.), University of Toronto; Edmond J. Safra Program in Parkinson's Disease (A.E.L.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN; Division of Neurology (A.E.L.), University of Toronto; Krembil Brain Institute (A.E.L.), Toronto, Ontario, Canada; Centre for Molecular Medicine and Innovative Therapeutics (S.K.), Murdoch University; Perron Institute for Neurological and Translational Science (S.K.), Nedlands, Australia; Department of Neurology and Neurosurgery (P.T.), University of Tartu; Neurology Clinic (P.T.), Tartu University Hospital, Estonia; Department of Neurologie (S.L., A.B., J.-C.C.), Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Sorbonne Université; Assistance Publique Hôpitaux de Paris (J.-C.C.), Department of Neurology, CIC Neurosciences; Univ. Lille (M.-C.C.-H., E.M.), Inserm, CHU Lille, UMR-S 1172-LilNCog-Centre de Recherche Lille Neurosciences & Cognition, France; Department of Neurology (A.B.D.), Ludwig Maximilians University of Munich; Department of Neurology (A.B.D.), Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurology and Department of Clinical Genomics (A.B.D.), Mayo Clinic Florida, Jacksonville; Department of Neurology (G.M.H., E.D.), Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia; 1st Department of Neurology (L. Stefanis, A.M.S.), Eginition Hospital, Medical School, National and Kapodistrian University of Athens; Center of Clinical Research, Experimental Surgery and Translational Research (L. Stefanis), Biomedical Research Foundation of the Academy of Athens, Greece; Department of Molecular Medicine (E.M.V.), University of Pavia; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation (E.M.V.), Pavia; UOC Medical Genetics and Advanced Cell Diagnostics (S.P.), S. Andrea University Hospital, Rome; Department of Clinical and Molecular Medicine (S.P.), University of Rome; Department of Biomedical Sciences (L. Straniero), Humanitas University, Milan; Parkinson Institute (A.L.Z.), Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTO, Milano; Parkinson Institute (G.P.), Fontazione Grigioni-Via Zuretti, Milan; Department of Neurology (L.B., C.F.), San Gerardo Hospital, Monza; Department of Medicine and Surgery and Milan Center for Neuroscience (L.B., C.F.), University of Milano Bicocca, Milano; Institute for Biomedical Research and Innovation (G.A.), National Research Council, Cosenza; Institute of Neurology (A.Q.), Magna Graecia University; Institute of Molecular Bioimaging and Physiology National Research Council (M.G.), Catanzaro, Italy; Department of Integrative Physiology and Bio-Nano Medicine (H.M., A.N.), National Defense Medical College, Saitama; Department of Neurology (N.H., K.N.), Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Neurology (S.J.C.), Asan Medical Center, University of Ulsan College of Medicine; Department of Neurology (Y.J.K.), Yonsei University College of Medicine, Seoul, South Korea; Neurology (P.K., R.K.), Centre Hospitalier de Luxembourg; Department of Neurology (B.P.C.V.D.W., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Radboud University Medical Centre, the Netherlands; Department of Neurology (M.T., L.P.), Oslo University Hospital, Norway; Instituto de Medicina Molecular João Lobo Antunes (L.C.G., J.J.F.), Faculdade de Medicina, Universidade de Lisboa; Department of Neurosciences and Mental Health (L.C.G.), Neurology, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte (CHULN); Laboratory of Clinical Pharmacology and Therapeutics (J.J.F.), Faculdade de Medicina, Universidade de Lisboa, Portugal; Division of Molecular Biology and Human Genetics (S.B.), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; Division of Neurology (J.C.), Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; Parkinson's disease & Movement Disorders Unit (E.T.), Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII) (E.T.); Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders (M.E.), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona; Fundació per la Recerca Biomèdica i Social Mútua Terrassa (P.P., M.D.-F.), Terrassa; Movement Disorders Unit (P.P., M.D.-F.), Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain; Department of Clinical Neuroscience (K.W.), Department of Medical Epidemiology and Biostatistics (K.W., N.L.P.), and Department of Neuroscience (C.R., A.C.B.), Karolinska Institutet, Stockholm; Department of Clinical Sciences Lund (A.P., C.H.), Neurology, Skåne University Hospital, Lund University, Sweden; University of Birmingham and Sandwell and West Birmingham Hospitals NHS Trust (C.E.C.); Faculty of Medicine (K.E.M.), Health and Life Sciences, Queens University, Belfast; Department of Clinical and Movement Neurosciences (M.M.T.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (D.K., L.F.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; Metabolic Biochemistry (L.F.B.), Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München; Munich Cluster for Systems Neurology (SyNergy) (L.F.B.); German Center for Neurodegenerative Diseases (DZNE) (L.F.B.), Munich, Germany; Department of Neurology (M.F.), McKnight Brain Institute, University of Florida, Gainesville; Parkinson's Research Clinic (R.K.), Centre Hospitalier de Luxembourg; and Transversal Translational Medicine (R.K.), Luxembourg Institute of Health (LIH), Strassen.

Article Synopsis
  • The study investigates the relationship between body mass index (BMI) and Parkinson's disease (PD) using a method called Mendelian randomization to determine if higher genetically predicted BMI is linked to a lower incidence of PD.
  • Researchers analyzed genetic data from large groups of individuals, including over 800,000 for BMI and nearly 29,000 for PD, focusing on factors like age, disease duration, and gender to examine the associations.
  • Results indicated an inverse relationship between genetically predicted BMI and PD, particularly among younger participants and women, suggesting that lower BMI may be associated with a higher risk of developing Parkinson's disease.
View Article and Find Full Text PDF

The Interaction between HLA-DRB1 and Smoking in Parkinson's Disease Revisited.

Mov Disord

September 2022

Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Team "Exposome, Heredity, Cancer, and Health", CESP, Villejuif, France.

Article Synopsis
  • Two contrasting studies previously examined the link between the HLA-DRB1 gene and smoking concerning Parkinson's disease (PD), leading to varying conclusions.
  • This research aimed to replicate those findings by analyzing genetic data from over 12,000 PD cases and nearly 9,500 controls, focusing on specific genetic variants related to smoking.
  • The results indicated that a specific variant in the HLA-DRB1 gene (valine at position 11) was significantly associated with PD, revealing an inverse relationship between smoking initiation and PD only in individuals lacking this variant, which invites further investigation into the underlying mechanisms.
View Article and Find Full Text PDF

Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study.

Mov Disord

April 2022

UVSQ, Univ. Paris-Sud, Inserm, Team "Exposome, Heredity, Cancer and Health," CESP, Université Paris-Saclay, Villejuif, France.

Article Synopsis
  • Previous studies suggested that dairy intake may increase the risk of Parkinson's disease (PD), especially in men, but the nature of this relationship was unclear.
  • This research used genetic data to investigate the link between dairy consumption and PD through a method called Mendelian randomization, involving nearly 10,000 patients and 8,000 controls.
  • The results indicated that genetically predicted higher dairy intake is associated with an increased risk of PD, particularly in men, providing evidence for a possible causal relationship.
View Article and Find Full Text PDF

Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease.

J Parkinsons Dis

April 2022

Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Team "Exposome, heredity, cancer and health", CESP, Villejuif, France.

Article Synopsis
  • The study investigates how lifestyle factors like smoking, alcohol, and coffee consumption relate to Parkinson's disease (PD), using a genetic approach to avoid potential biases in causation.* -
  • Findings indicate that smoking is significantly associated with a lower risk of developing PD, while no such associations were found for alcohol or coffee consumption, though there is a suggestion that genetic vulnerability to PD might increase alcohol drinking.* -
  • The research concludes that the protective effect of smoking on PD is likely genuine and not influenced by reverse causation or other biases; however, the data on alcohol and coffee remains inconclusive due to limited power.*
View Article and Find Full Text PDF

In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.

View Article and Find Full Text PDF

Radiobiological quantities in proton-therapy: Estimation and validation using Geant4-based Monte Carlo simulations.

Phys Med

February 2019

INFN-LNS. Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania, Italy; ELI-Beamline Project, Inst. Physics, ASCR, PALS Center, Prague, Czech Republic. Electronic address:

Purpose: The Geant4 Monte Carlo simulation toolkit was used to reproduce radiobiological parameters measured by irradiating three different cancerous cell lines with monochromatic and clinical proton beams.

Methods: The experimental set-up adopted for irradiations was fully simulated with a dedicated open-source Geant4 application. Cells survival fractions was calculated coupling the Geant4 simulations with two analytical radiobiological models: one based on the LEM (Local Effect Model) approach and the other on a semi-empirical parameterisation.

View Article and Find Full Text PDF

Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons.

View Article and Find Full Text PDF

Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g.

View Article and Find Full Text PDF

Purpose: To investigate the performance of (18)F-fluorocholine ((18)F-FCH) PET/CT in relation to the prostate-specific antigen (PSA) kinetic indexes, PSA doubling time (PSAdt) and PSA velocity (PSAve), in detecting recurrent prostate cancer (PC) in a selected population of patients treated with radical prostatectomy and with PSA ≤2 ng/ml.

Methods: The study group comprised 79 patients (mean age 70 ± 7 years, range 58 - 77 years) who had been treated with radical surgery 30 to 90 months previously and with biochemical failure (defined as a measurable serum PSA level) who were evaluated with (18)F-FCH PET/CT. In order to establish the optimal threshold for PSAdt and PSAve, the diagnostic performance of PSA, PSAdt and PSAve were compared by receiver operating characteristic analysis.

View Article and Find Full Text PDF

The Effectiveness of Transcranial Brain Stimulation in Improving Clinical Signs of Hyperkinetic Movement Disorders.

Front Neurosci

January 2016

Neuroimaging Research Unit, Institute of Molecular Bioimaging and Physiology - National Research CouncilGermaneto, Italy; Neurology Unit, Institute of Neurology, University "Magna Graecia"Catanzaro, Italy.

Repetitive transcranial magnetic stimulation (rTMS) is a safe and painless method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use.

View Article and Find Full Text PDF

Previous studies suggested that listening to different types of music may modulate differently psychological mood and physiological responses associated with the induced emotions. In this study the effect of listening to instrumental classical vs. atonal contemporary music was examined in a group of 50 non-expert listeners.

View Article and Find Full Text PDF

Background: The aim of the current study was to distinguish patients who had tremor-dominant Parkinson's disease (tPD) from those who had essential tremor with rest tremor (rET).

Methods: We combined voxel-based morphometry-derived gray matter and white matter volumes and diffusion tensor imaging-derived mean diffusivity and fractional anisotropy in a support vector machine (SVM) to evaluate 15 patients with rET and 15 patients with tPD. Dopamine transporter single-photon emission computed tomography imaging was used as ground truth.

View Article and Find Full Text PDF

Mediastinal inflammatory pseudotumor is a rare disease with reactive pseudoneo-plastic features and a proven capacity for local invasion. The radiographic appearance of inflammatory pseudotumor is quite non-specific and the definitive diagnosis is based on the histological evaluation of tissue specimens. Resection of the lesion is the treatment of choice.

View Article and Find Full Text PDF

Changes in D(2) receptors during antidepressant therapy have been reported in patients with major depressive disorder using PET/SPET. The aim of this study was to evaluate modifications in D(2) receptors that might occur in patients affected by obsessive-compulsive disorder (OCD) during serotonin reuptake sites inhibitors (SSRIs). To this purpose, we measured the in vivo binding of [(11)C]raclopride ([(11)C]Rac)in the brain of a group of OCD naïve patients before and after the repeated administration of the inhibitor SSRI fluvoxamine.

View Article and Find Full Text PDF