12 results match your criteria: "Institute of Molecular Bioimaging and Physiology (IBFM-CNR)[Affiliation]"

Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic imaging and bioptic characterization.

View Article and Find Full Text PDF

Cancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type.

View Article and Find Full Text PDF

Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC.

View Article and Find Full Text PDF

The purpose of this paper is to characterize the skin deterministic damage due to the effect of proton beam irradiation in mice occurred during a long-term observational experiment. This study was initially defined to evaluate the insurgence of myelopathy irradiating spinal cords with the distal part of a Spread-out Bragg peak (SOBP). To the best of our knowledge, no study has been conducted highlighting high grades of skin injury at the dose used in this paper.

View Article and Find Full Text PDF

The Intra-Voxel Incoherent Motion (IVIM) model is largely adopted to estimate slow and fast diffusion coefficients of water molecules in biological tissues, which are used in cancer applications. The most reported fitting approach is a voxel-wise segmented non-linear least square, whereas Bayesian approaches with a direct fit, also considering spatial regularization, were proposed too. In this work a novel segmented Bayesian method was proposed, also in combination with a spatial regularization through a Conditional Autoregressive (CAR) prior specification.

View Article and Find Full Text PDF

In medical imaging, the availability of robust and accurate automatic segmentation methods is very important for a user-independent and time-saving delineation of regions of interest. In this work, we present a new variational formulation for multiclass image segmentation based on active contours and probability density functions demonstrating that the method is fast, accurate, and effective for MRI brain image segmentation. We define an energy function assuming that the regions to segment are independent.

View Article and Find Full Text PDF

Purpose: Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response.

Materials And Methods: We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses.

View Article and Find Full Text PDF

In this work, we investigated motor network structure in patients affected by essential tremor (ET) with or without resting tremor, using probabilistic tractography of the cerebello-thalamo-basal ganglia-cortical loop. Twenty-five patients with ET, twenty-two patients with ET associated with resting tremor (rET), and twenty-five age- and sex-matched healthy controls were included in the study. All participants underwent whole-brain 3D T1-weighted and diffusion-weighted MRI, and DAT-SPECT.

View Article and Find Full Text PDF

In head-and-neck radiotherapy, an early detection of patients who will undergo parotid glands shrinkage during the treatment is of primary importance, since this condition has been found to be associated with acute toxicity. In this work, a recently proposed approach, here named Likelihood-Fuzzy Analysis, based on both statistical learning and Fuzzy Logic, is proposed to support the identification of early predictors of parotid shrinkage from Computed Tomography images acquired during radiotherapy. For this purpose, a set of textural image parameters was extracted and considered as candidate of parotid shrinkage prediction; for all these parameters and combinations of maximum three of them, a fuzzy rule base was extracted, gaining very good results in terms of accuracy, sensitivity and specificity.

View Article and Find Full Text PDF

We assessed the performance of patients with a diagnosis of Alzheimer׳s disease (AD) and of the semantic variant of primary progressive aphasia (sv-PPA) in a series of tasks involving both abstract and concrete stimuli, which were controlled for most of the variables that have been shown to affect performance on lexical-semantic tasks. Our aims were to compare the patients׳ performance on abstract and concrete stimuli and to assess category-effects within the abstract and concrete domains. The results showed: (i) a better performance on abstract than concrete concepts in sv-PPA patients.

View Article and Find Full Text PDF

We developed an automatic method for regional analysis of femoral neck images acquired by peripheral quantitative computed tomography (pQCT), based on automatic spatial re-alignment and segmentation; the segmentation method, based on a morphological approach, explicitly accounts for the presence of three different bone compartments: cortical region, trabecular region, and transition zone between cortical and trabecular compartments. The proposed method was applied on 13 femoral neck sections derived from female donors who were undergoing hip replacement surgery for primary degenerative arthritis or fracture, and a typical densitometric and structural analysis was performed both globally and regionally. The proposed segmentation method was quantitatively evaluated by comparing automatic contour and the corresponding manual contours delineated by three operators using metrics based on surface distance (average symmetric distance, ASD) and volumetric overlapping (dice similarity coefficient, DSC).

View Article and Find Full Text PDF

Aim: Implementation and validation of an automatic registration method based on mutual information (MI) for the integration of thoracic and abdominal positron emission tomography (PET)/computed tomography (CT) studies, with the purpose to facilitate in a clinical context the inclusion of PET metabolic information in conformal radiotherapy (RT).

Methods: Registration was obtained by modeling a rigid spatial transformation between CT and PET transmission studies. The registration method was based on Normalized Mutual Information (NMI), by iteratively transforming the PET volume, until its optimal alignment to the CT study is achieved, in correspondence of the maximum of NMI.

View Article and Find Full Text PDF