122 results match your criteria: "Institute of Microstructure Technology IMT[Affiliation]"
Sci Rep
April 2020
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Detection of micropollutants such as steroid hormones occurring in the aquatic environment at concentrations between ng/L and µg/L remains a major challenge, in particular when treatment efficiency is to be evaluated. Steroid hormones are typically analysed using mass-spectrometry methods, requiring pre-concentration and/or derivatisation procedures to achieve required detection limits. Free of sample preparation steps, the use of radiolabelled contaminants with liquid scintillation counting is limited to single-compound systems and require a separation of hormone mixtures before detection.
View Article and Find Full Text PDFMicromachines (Basel)
March 2020
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT); 76344 Eggenstein-Leopoldshafen, Germany.
Regenerative cryocoolers such as Stirling, Gifford-McMahon, and pulse tube cryocoolers possess great merits such as small size, low cost, high reliability, and good cooling capacity. These merits led them to meet many IR and superconducting based application requirements. The regenerator is a vital element in these closed-cycle cryocoolers, but the overall performance depends strongly on the effectiveness of the regenerator.
View Article and Find Full Text PDFPolymers (Basel)
March 2020
N.Able GmbH, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Polymeric biointerfaces are already being used extensively in a wide set of biomedical devices and systems. The possibility of controlling cell populations on biointerfaces may be essential for connecting biological systems to synthetic materials and for researching relevant interactions between life and matter. In this study, we present and analyze synergies between an innovative approach for surface microstructuring and a molecular nanopatterning procedure of recent development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany.
Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic-inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors.
View Article and Find Full Text PDFMicromachines (Basel)
February 2020
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany.
In micro heat exchangers, due to the presence of distributing and collecting manifolds as well as hundreds of parallel microchannels, a complete conjugate heat transfer analysis requires a large amount of computational power. Therefore in this study, a novel methodology is developed to model the microchannels as a porous medium where a compressible gas is used as a working fluid. With the help of such a reduced model, a detailed flow analysis through individual microchannels can be avoided by studying the device as a whole at a considerably less computational cost.
View Article and Find Full Text PDFAnalyst
December 2019
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
The magic angle coil spinning (MACS) technique has been introduced as a very promising extension for solid state NMR detection, demonstrating sensitivity enhancements by a factor of 14 from the very first time it has been reported. The main beneficiary of this technique is the scientific community dealing with mass- and volume-limited, rare, or expensive samples. However, more than a decade after the first report on MACS, there is a very limited number of groups who have continued to develop the technique, let alone it being widely adopted by practitioners.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
March 2020
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany. Electronic address:
It has always been of considerable interest to study the nuclear magnetic resonance response of multiple nuclei simultaneously, whether these signals arise from internuclear couplings within the same molecule, or from uncoupled nuclei within sample mixtures. The literature contains numerous uncorrelated reports on techniques employed to achieve multi-nuclear NMR detection. This paper consolidates the subset of techniques in which single coil detectors are utilized, and highlights the strengths and weaknesses of each approach, at the same time pointing the way towards future developments in the field of multi-nuclear NMR.
View Article and Find Full Text PDFSmall
August 2019
Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Microfluidic water-in-oil droplets are a versatile tool for biological and biochemical applications due to the advantages of extremely small monodisperse reaction vessels in the pL-nL range. A key factor for the successful dissemination of this technology to life science laboratory users is the ability to produce microfluidic droplet generators and related accessories by low-entry barrier methods, which enable rapid prototyping and manufacturing of devices with low instrument and material costs. The direct, experimental side-by-side comparison of three commonly used additive manufacturing (AM) methods, namely fused deposition modeling (FDM), inkjet printing (InkJ), and stereolithography (SLA), is reported.
View Article and Find Full Text PDFJ Phys Chem A
August 2019
Institute of Microstructure Technology (IMT) , Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.
In photon upconversion (UC) based on triplet-triplet annihilation, the upconversion photoluminescent quantum yield (UC-PLQY) depends on the excitation power density in a way that can be described by a single figure of merit. This figure of merit, the threshold value, allows the excitation power density required for efficient UC-PLQY to be compared between different triplet-triplet annihilation systems. Here, we investigate the excitation power density dependence of two-photon UC processes in a series of four lanthanide-doped inorganic host materials (oxides, fluorides, and chlorides) all doped with 18 mol % Yb sensitizer ions and 2 mol % Er activator ions.
View Article and Find Full Text PDFNat Commun
May 2019
Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany.
In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable "steric control units" (SCUs).
View Article and Find Full Text PDFMicromachines (Basel)
April 2019
Staff Position Microstructures and Process Sensors (MPS), Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Within the last few decades miniaturization has a driving force in almost all areas of technology, leading to a tremendous intensification of systems and processes. Information technology provides now data density several orders of magnitude higher than a few years ago, and the smartphone technology includes, as well the simple ability to communicate with others, features like internet, video and music streaming, but also implementation of the global positioning system, environment sensors or measurement systems for individual health. So-called wearables are everywhere, from the physio-parameter sensing wrist smart watch up to the measurement of heart rates by underwear.
View Article and Find Full Text PDFAdv Mater
June 2019
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.
View Article and Find Full Text PDFPolymers (Basel)
November 2018
Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Cantoblanco-Madrid, Spain.
The success of labs- and organs-on-chips as transformative technologies in the biomedical arena relies on our capacity of solving some current challenges related to their design, modeling, manufacturability, and usability. Among present needs for the industrial scalability and impact promotion of these bio-devices, their sustainable mass production constitutes a breakthrough for reaching the desired level of repeatability in systematic testing procedures based on labs- and organs-on-chips. The use of adequate biomaterials for cell-culture processes and the achievement of the multi-scale features required, for in vitro modeling the physiological interactions among cells, tissues, and organoids, which prove to be demanding requirements in terms of production.
View Article and Find Full Text PDFMicromachines (Basel)
March 2019
Bernal Institute, School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland.
Government regulations and environmental conditions are pushing the development of improved miniaturized gas analyzers for volatile organic compounds. One of the many detectors used for gas analysis is the photoionization detector (PID). This paper presents the design and characterization of a microfluidic photoionization detector (or µPID) fabricated using micro milling and electrical discharge machining techniques.
View Article and Find Full Text PDFAdv Mater
June 2019
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.
Hybrid organic-inorganic metal halide perovskite semiconductors provide opportunities and challenges for the fabrication of low-cost thin-film photovoltaic devices. The opportunities are clear: the power conversion efficiency (PCE) of small-area perovskite photovoltaics has surpassed many established thin-film technologies. However, the large-scale solution-based deposition of perovskite layers introduces challenges.
View Article and Find Full Text PDFAdv Mater
June 2019
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
3D printing has emerged as an enabling technology for miniaturization. High-precision printing techniques such as stereolithography are capable of printing microreactors and lab-on-a-chip devices for efficient parallelization of biological and biochemical reactions under reduced uptake of reactants. In the world of chemistry, however, up until now, miniaturization has played a minor role.
View Article and Find Full Text PDFSmall
February 2019
Institute of Microstructure Technology (IMT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
The locally defined growth of carbon nanofibers with lambda shape in an open flame process is demonstrated. Via the growth time, the geometry of the structures can be tailored to a Λ- or λ-type shape. Microchannel cantilever spotting and dip-pen nanolithography are utilized for the deposition of catalytic salt NiCl · 6H O for locally controlled growth of lambda-shaped carbon nanofibers.
View Article and Find Full Text PDFAnal Chem
February 2019
Institute of Microstructure Technology (IMT) , Karlsruhe Institute of Technology (KIT), Karlsruhe , Baden-Württemberg 76131 , Germany.
The decaying nature of magnetic resonance (MR) signals results in a decreasing signal-to-quantization noise ratio (SQNR) over the acquisition time. Here we describe a method to enhance the SQNR, and thus the overall signal-to-noise ratio (SNR), by dynamically adapting the gain of the receiver before analog-to-digital conversion (ADC). This is in contrast to a standard experiment in which the gain is fixed for a single data acquisition and is thus adjusted only for the first points of the signal.
View Article and Find Full Text PDFSci Rep
November 2018
Laboratory of Applied Chemistry, Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131, Karlsruhe, Germany.
The concept of sequence-definition in the sense of polymer chemistry is introduced to conjugated, rod-like oligo(phenylene ethynylene)s via an iterative synthesis procedure. Specifically, monodisperse sequence-defined trimers and pentamers were prepared via iterative Sonogashira cross-coupling and deprotection. The reaction procedure was extended to tetra- and pentamers for the first time yielding a monodisperse pentamer with 18% and a sequence-defined pentamer with 3.
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2018
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), H.-v.-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Lizards of the genus are widely known under the common name sandfish due to their ability to swim in loose, aeolian sand. Some studies report that this fascinating property of sandfish is accompanied by unique tribological properties of their skin such as ultra-low adhesion, friction and wear. The majority of these reports, however, is based on experiments conducted with a non-standard granular tribometer.
View Article and Find Full Text PDFNat Commun
October 2018
Karlsruhe Institute of Technology (KIT) Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen, 76344, Germany.
An ideal material for photon harvesting must allow control of the exciton diffusion length and directionality. This is necessary in order to guide excitons to a reaction center, where their energy can drive a desired process. To reach this goal both of the following are required; short- and long-range structural order in the material and a detailed understanding of the excitonic transport.
View Article and Find Full Text PDFRev Sci Instrum
August 2018
Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76131 Karlsruhe, Germany.
Among the methods developed for hyperspectral imaging, pushbroom spatial scanning stands out when it comes to achieving high spectral resolution over a wide spectral range. However, conventional pushbroom systems are usually realized using passive system components, which has limited their flexibility and adaptability and narrowed their application scenarios. In this work, we adopt a different approach to the design and construction of pushbroom systems based on using active internal components.
View Article and Find Full Text PDFAdv Mater
August 2018
Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Surface-bound microarrays of multiple oligo- and macromolecules (e.g., peptides, DNA) offer versatile options in biomedical applications like drug screening, DNA analysis, or medical diagnostics.
View Article and Find Full Text PDFNat Commun
May 2018
Institute of Physics and Astronomy, Soft Matter Physics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways.
View Article and Find Full Text PDFSci Rep
April 2018
Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
Electro-optic modulators for high-speed on-off keying (OOK) are key components of short- and medium-reach interconnects in data-center networks. Small footprint, cost-efficient large-scale production, small drive voltages and ultra-low power consumption are of paramount importance for such devices. Here we demonstrate that the concept of silicon-organic hybrid (SOH) integration perfectly meets these challenges.
View Article and Find Full Text PDF