435 results match your criteria: "Institute of Microstructure Technology[Affiliation]"

Triplet-triplet annihilation upconversion (TTA-UC) is an important type of optical process with applications in biophotonics, solar energy harvesting and photochemistry. In most of the TTA-UC systems, the formation of triplet excited states takes place spin-orbital interactions promoted by heavy atoms. Given the crucial role of heavy atoms (especially noble metals, such as Pd and Pt) in promoting intersystem crossing (ISC) and, therefore, in production of UC luminescence, the feasibility of using more readily available and inexpensive sensitizers without heavy atoms remains a challenge.

View Article and Find Full Text PDF

Ultra-fast optical ranging using quantum-dash mode-locked laser diodes.

Sci Rep

January 2022

Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), Engesserstrasse 5, 76131, Karlsruhe, Germany.

Laser-based light detection and ranging (LiDAR) is key to many applications in science and industry. For many use cases, compactness and power efficiency are key, especially in high-volume applications such as industrial sensing, navigation of autonomous objects, or digitization of 3D scenes using hand-held devices. In this context, comb-based ranging systems are of particular interest, combining high accuracy with high measurement speed.

View Article and Find Full Text PDF

Cubic hexagonal - phase, size and morphology effects on the photoluminescence quantum yield of NaGdF:Er/Yb upconverting nanoparticles.

Nanoscale

January 2022

Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (INRS - EMT), Université du Québec, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X 1P7, Canada.

Upconverting nanoparticles (UCNPs) are well-known for their capacity to convert near-infrared light into UV/visible light, benefitting various applications where light triggering is required. At the nanoscale, loss of luminescence intensity is observed and thus, a decrease in photoluminescence quantum yield (PLQY), usually ascribed to surface quenching. We evaluate this by measuring the PLQY of NaGdF:Er,Yb UCNPs as a function of size ( 15 to 100 nm) and shape (spheres, cubes, hexagons).

View Article and Find Full Text PDF

Biodiesel production from first-generation feedstock has shown a strong correlation with the increase in deforestation and the necessity of larger areas for land farming. Recent estimation from the European Federation for Transport and Environment evidenced that since the 2000s decade, an area equal to the Netherlands was deforested to supply global biodiesel demand, mainly originating from first-generation feedstock. Nevertheless, biodiesel is renewable, and it can be a greener source of energy than petroleum.

View Article and Find Full Text PDF

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat.

View Article and Find Full Text PDF

Defect states are known to trigger trap-assisted nonradiative recombination, restricting the performance of perovskite solar cells (PSCs). Here, we investigate the trap states in long-term thermally stressed methylammonium lead iodide (MAPbI) perovskite thin films over 500 h at 85 °C employing thermally stimulated current measurements. A prominent deep trap level was detected with an activation energy of ∼0.

View Article and Find Full Text PDF

Nanoantennas Inversely Designed to Couple Free Space and a Metal-Insulator-Metal Waveguide.

Nanomaterials (Basel)

November 2021

State Key Laboratory of Applied Optics (SKLAO), Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China.

The metal-insulator-metal (MIM) waveguide, which can directly couple free space photons, acts as an important interface between conventional optics and subwavelength photoelectrons. The reason for the difficulty of this optical coupling is the mismatch between the large wave vector of the MIM plasmon mode and photons. With the increase in the wave vector, there is an increase in the field and Ohmic losses of the metal layer, and the strength of the MIM mode decreases accordingly.

View Article and Find Full Text PDF

It has been a substantial challenge to develop a printed thermoelectric (TE) material with a figure-of-merit > 1. In this work, high p-type BiSbTe-based printable TE materials have been advanced by interface modification of the TE grains with a nonstoichiometric β-CuSe-based inorganic binder (IB) through a facile printing-sintering process. As a result, a very high TE power factor of ∼17.

View Article and Find Full Text PDF

Retrieval of 3D information in X-ray dark-field imaging with a large field of view.

Sci Rep

December 2021

Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

X-ray dark-field imaging is a widely researched imaging technique, with many studies on samples of very different dimensions and at very different resolutions. However, retrieval of three-dimensional (3D) information for human thorax sized objects has not yet been demonstrated. We present a method, similar to classic tomography and tomosynthesis, to obtain 3D information in X-ray dark-field imaging.

View Article and Find Full Text PDF

Dynamic Multicontrast X-Ray Imaging Method Applied to Additive Manufacturing.

Phys Rev Lett

November 2021

Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London WC1E 6BT, United Kingdom.

We present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.

View Article and Find Full Text PDF

Single-Shot Multicontrast X-ray Imaging for In Situ Visualization of Chemical Reaction Products.

J Imaging

October 2021

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

We present the application of single-shot multicontrast X-ray imaging with an inverted Hartmann mask to the time-resolved in situ visualization of chemical reaction products. The real-time monitoring of an illustrative chemical reaction indicated the formation of the precipitate by the absorption, differential phase, and scattering contrast images obtained from a single projection. Through these contrast channels, the formation of the precipitate along the mixing line of the reagents, the border between the solid and the solution, and the presence of the scattering structures of 100-200 nm sizes were observed.

View Article and Find Full Text PDF

Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment.

Magn Reson (Gott)

November 2021

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Band selectivity to address specific resonances in a spectrum enables one to encode individual settings for diffusion experiments. In a single experiment, this could include different gradient strengths (enabling coverage of a larger range of diffusion constants), different diffusion delays, or different gradient directions (enabling anisotropic diffusion measurement). In this report, a selective variant of the bipolar pulsed gradient eddy current delay (BPP-LED) experiment, enabling selective encoding of three resonances, was implemented.

View Article and Find Full Text PDF

Harvesting Sub-bandgap Photons via Upconversion for Perovskite Solar Cells.

ACS Appl Mater Interfaces

November 2021

Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.

Lanthanide-based upconversion (UC) allows harvesting sub-bandgap near-infrared photons in photovoltaics. In this work, we investigate UC in perovskite solar cells by implementing UC single crystal BaF:Yb, Er at the rear of the solar cell. Upon illumination with high-intensity sub-bandgap photons at 980 nm, the BaF:Yb, Er crystal emits upconverted photons in the spectral range between 520 and 700 nm.

View Article and Find Full Text PDF

Impact of -Butylammonium Bromide on the Chemical and Electronic Structure of Double-Cation Perovskite Thin Films.

ACS Appl Mater Interfaces

November 2021

Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.

2D/3D perovskite heterostructures have emerged as a promising material composition to reduce nonradiative recombination in perovskite-based LEDs and solar cells. Such heterostructures can be created by a surface treatment with large organic cations, for example, -butylammonium bromide (BABr). To understand the impact of the BABr surface treatment on the double-cation (CsFAPb(IBr)) (FA = formamidinium) perovskite thin film and further optimize the corresponding structures, an in-depth understanding of the chemical and electronic properties of the involved surfaces, interfaces, and bulk is required.

View Article and Find Full Text PDF

Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale.

View Article and Find Full Text PDF

Carbon materials constitute a growing family of high-performance materials immersed in ongoing scientific technological revolutions. Their biochemical properties are interesting for a wide set of healthcare applications and their biomechanical performance, which can be modulated to mimic most human tissues, make them remarkable candidates for tissue repair and regeneration, especially for articular problems and osteochondral defects involving diverse tissues with very different morphologies and properties. However, more systematic approaches to the engineering design of carbon-based cell niches and scaffolds are needed and relevant challenges should still be overcome through extensive and collaborative research.

View Article and Find Full Text PDF

It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices.

View Article and Find Full Text PDF

The Combinatorial Fusion Cascade to Generate the Standard Genetic Code.

Life (Basel)

September 2021

Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany.

Combinatorial fusion cascade was proposed as a transition stage between prebiotic chemistry and early forms of life. The combinatorial fusion cascade consists of three stages: eight initial complimentary pairs of amino acids, four protocodes, and the standard genetic code. The initial complimentary pairs and the protocodes are divided into dominant and recessive entities.

View Article and Find Full Text PDF

Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy.

Microsyst Nanoeng

April 2021

Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

A novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition.

View Article and Find Full Text PDF

X-ray backlighters allow the capture of sharp images of fast dynamic processes due to extremely short exposure times. Moiré imaging enables simultaneously measuring the absorption and differential phase-contrast (DPC) of these processes. Acquiring images with one single shot limits the X-ray photon flux, which can result in noisy images.

View Article and Find Full Text PDF

Narrow-band gap (NBG) Sn-Pb perovskites with band gaps of ∼1.2 eV, which correspond to a broad photon absorption range up to ∼1033 nm, are highly promising candidates for bottom solar cells in all-perovskite tandem photovoltaics. To exploit their potential, avoiding optical losses in the top layer stacks of the tandem configuration is essential.

View Article and Find Full Text PDF

Combining semiconductor optical amplifiers (SOA) on direct-bandgap III-V substrates with low-loss silicon or silicon-nitride photonic integrated circuits (PIC) has been key to chip-scale external-cavity lasers (ECL) that offer wideband tunability along with small optical linewidths. However, fabrication of such devices still relies on technologically demanding monolithic integration of heterogeneous material systems or requires costly high-precision package-level assembly, often based on active alignment, to achieve low-loss coupling between the SOA and the external feedback circuits. In this paper, we demonstrate a novel class of hybrid ECL that overcome these limitations by exploiting 3D-printed photonic wire bonds as intra-cavity coupling elements.

View Article and Find Full Text PDF

Magnetostatic reciprocity for MR magnet design.

Magn Reson (Gott)

August 2021

Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany.

Electromagnetic reciprocity has long been a staple in magnetic resonance (MR) radio-frequency development, offering geometrical insights and a figure of merit for various resonator designs. In a similar manner, we use magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, by establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. Based on magnetostatic theory and non-linear finite element modelling (FEM) simulations, it is shown how assembled permanent magnet setups perform in the embodiment of a variety of designs and how magnetostatic reciprocity is leveraged in the presence of difficulties associated with self-interactions, to fulfil various design objectives, including self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic saturation field strengths.

View Article and Find Full Text PDF

Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review.

Chem Rev

August 2021

Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient.

View Article and Find Full Text PDF

Dosimetry on first clinical dark-field chest radiography.

Med Phys

October 2021

Chair of Biomedical Physics, Department of Physics, School of Natural Sciences and Munich School of BioEngineering, Technical University of Munich, Garching, Germany.

Purpose: The purpose of this study was to evaluate the dose characteristic for patient examinations at the first clinical X-ray dark-field chest radiography system and to determine whether the effective patient dose is within a clinically acceptable dose range.

Methods: A clinical setup for grating-based dark-field chest radiography was constructed and commissioned, operating at a tube voltage of 70 kVp. Thermoluminescent dosimeter (TLD) measurements were conducted using an anthropomorphic phantom modeling the reference person to obtain a conversion coefficient relating dose area product (DAP) to effective patient dose at the dark-field system.

View Article and Find Full Text PDF