430 results match your criteria: "Institute of Microstructure Technology[Affiliation]"
Angew Chem Int Ed Engl
September 2024
Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States.
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors.
View Article and Find Full Text PDFSci Rep
May 2024
Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344, Eggenstein-Leopoldshafen, Germany.
Electron paramagnetic resonance (EPR) spectroscopy stands out as a powerful analytical technique with extensive applications in the fields of biology, chemistry, physics, and material sciences. It proves invaluable for investigating the molecular structure and reaction mechanisms of substances containing unpaired electrons, such as metal complexes, organic and inorganic radicals, and intermediate states in chemical reactions. However, despite their remarkable capabilities, EPR systems face significant limitations in terms of sample throughput, as current commercial systems only target the analysis of one sample at a time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
The long-term stability of perovskite solar cells (PSCs) remains a bottleneck for commercialization. While studies on the stoichiometry and morphology of PSCs with regard to performance are prevalent, understanding the influence of these factors on their long-term stability is lacking. In this work, we evaluate the impact of stoichiometry and morphology on the long-term stability of cesium formamidinium-based PSCs.
View Article and Find Full Text PDFNat Commun
May 2024
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Transparent roofs and walls offer a compelling solution for harnessing natural light. However, traditional glass roofs and walls face challenges such as glare, privacy concerns, and overheating issues. In this study, we present a polymer-based micro-photonic multi-functional metamaterial.
View Article and Find Full Text PDFCryst Growth Des
May 2024
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
Laser-induced crystallization is a novel alternative to classical methods for crystallizing organic molecules but requires a judicious choice of experimental parameters for the onset of crystallization to be predictable. This study investigated the impact of the laser repetition rate on the time delay from the start of the pulsed laser illumination to the initiation of crystallization, the so-called induction time. A supersaturated urea solution was irradiated with near-infrared (λ = 1030 nm) laser pulses of pulse duration τ = 5 ps at a pulse energy of approximately = 340 μJ while varying the repetition rate from 10 to 20,000 Hz.
View Article and Find Full Text PDFMicromachines (Basel)
April 2024
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
A surface acoustic wave (SAW) resonator chip setup is presented that eliminates interfering signal responses caused by changes in the electrical environment of the surrounding media. When using a two-port resonator, applying electrically shielding layers between the interdigital transducers (IDTs) can be challenging due to the limited dimensions. Therefore, a layered setup consisting of an insulating polymer layer and a conductive gold layer was preferred.
View Article and Find Full Text PDFEnergy Environ Sci
April 2024
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
The recent tremendous progress in monolithic perovskite-based double-junction solar cells is just the start of a new era of ultra-high-efficiency multi-junction photovoltaics. We report on triple-junction perovskite-perovskite-silicon solar cells with a record power conversion efficiency of 24.4%.
View Article and Find Full Text PDFNat Commun
April 2024
Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany.
Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision.
View Article and Find Full Text PDFChemistry
July 2024
Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Adv Mater
July 2024
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
Efficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA).
View Article and Find Full Text PDFNat Commun
March 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop AgSe-based thermoelectric films and flexible devices via inkjet printing.
View Article and Find Full Text PDFMicrosyst Nanoeng
March 2024
Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany.
Dielectrophoresis is a powerful and well-established technique that allows label-free, non-invasive manipulation of cells and particles by leveraging their electrical properties. The practical implementation of the associated electronics and user interface in a biology laboratory, however, requires an engineering background, thus hindering the broader adoption of the technique. In order to address these challenges and to bridge the gap between biologists and the engineering skills required for the implementation of DEP platforms, we report here a custom-built, compact, universal electronic platform termed ADEPT (adaptable dielectrophoresis embedded platform tool) for use with a simple microfluidic chip containing six microelectrodes.
View Article and Find Full Text PDFSci Rep
February 2024
Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131, Karlsruhe, Germany.
Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system.
View Article and Find Full Text PDFAdv Sci (Weinh)
April 2024
Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany.
Hybrid perovskite photovoltaics (PVs) promise cost-effective fabrication with large-scale solution-based manufacturing processes as well as high power conversion efficiencies. Almost all of today's high-performance solution-processed perovskite absorber films rely on so-called quenching techniques that rapidly increase supersaturation to induce a prompt crystallization. However, to date, there are no metrics for comparing results obtained with different quenching methods.
View Article and Find Full Text PDFSci Rep
January 2024
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.
View Article and Find Full Text PDFAnal Chim Acta
February 2024
School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, Dublin City University, Dublin 9, Ireland. Electronic address:
Background: Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks.
View Article and Find Full Text PDFACS Sens
February 2024
Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.
C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of C nuclear spins that also need to be synchronized with MRI field gradient pulses.
View Article and Find Full Text PDFAdv Healthc Mater
April 2024
IMDEA Materials Institute, Eric Kandel, 2, Getafe, 28906, Spain.
The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment.
View Article and Find Full Text PDFSmall
May 2024
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany.
Functional inks enable manufacturing of flexible electronic devices by means of printing technology. Silver nanoparticle (Ag NP) ink is widely used for printing conductive components. A sintering process is required to obtain sufficient conductivity.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Institute of Microstructure Technology, Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Time-of-flight secondary ion mass spectrometry is used to analyze solid-phase synthesis products in 60 µm spots of high-density peptide arrays. As a result, a table of specific fragments for the individual detection of amino acids and their side chain protecting groups within peptides is compiled. The specific signal of an amino acid increases linearly as its number increases in the immobilized peptide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Light Technology Institute, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen.
View Article and Find Full Text PDFAdv Mater
February 2024
Interactive Machine Learning Group, German Cancer Research Center, 69120, Heidelberg, Germany.
Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis.
View Article and Find Full Text PDFMRS Commun
August 2023
Ecole Polytechnique Féderale de Lausanne, 1015 Lausanne, Switzerland.
Unlabelled: Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds.
View Article and Find Full Text PDFSci Rep
October 2023
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany.
Rapid drug development requires a high throughput screening technology. NMR could benefit from parallel detection but is hampered by technical obstacles. Detection sites must be magnetically shimmed to ppb uniformity, which for parallel detection is precluded by commercial shimming technology.
View Article and Find Full Text PDFTrends Biotechnol
January 2024
Department of Mechanical Engineering, Universidad Politécnica de Madrid, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. Electronic address:
Engineered living materials (ELMs) combine living and non-living entities. Their associated ethical concerns must be addressed to promote safety, promote sustainability, and regulate societal impacts. This article identifies key ethical and safety issues by reflecting on fundamental ethical principles.
View Article and Find Full Text PDF