58 results match your criteria: "Institute of Microbiology and Swiss Institute of Bioinformatics[Affiliation]"

Unlabelled: The rising atmospheric concentration of CO is a major concern to society due to its global warming potential. In soils, CO-fixing microorganisms are preventing some of the CO from entering the atmosphere. Yet, the controls of dark CO fixation are rarely studied .

View Article and Find Full Text PDF

Background: Crustose Coralline Algae (CCA) play a crucial role in coral reef ecosystems, contributing significantly to reef formation and serving as substrates for coral recruitment. The microbiome associated with CCAs may promote coral recruitment, yet these microbial communities remain largely understudied. This study investigates the microbial communities associated with a large number of different CCA species across six different islands of French Polynesia, and assess their potential influence on the microbiome of coral recruits.

View Article and Find Full Text PDF

Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics.

Nat Microbiol

January 2025

Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Article Synopsis
  • * The study analyzed existing data on E. coli and established a new metric to differentiate between cross-resistance and collateral sensitivity, uncovering 404 cross-resistance and 267 collateral-sensitivity interactions—tripling known cases.
  • * By confirming many of these interactions through experimental methods and identifying specific mutants, the research showed that some drug pairs can display both resistance types, and using collateral-sensitive pairs can help prevent antibiotic resistance from developing in laboratory settings.
View Article and Find Full Text PDF

Determining the taxonomic composition (taxonomic profiling) is a fundamental task in studying environmental and host-associated microbial communities. However, genome-resolved microbial diversity on Earth remains undersampled, and accessing the genomic context of taxa detected during taxonomic profiling remains a challenging task. Here, we present the mOTUs online database (mOTUs-db), which is consistent with and interfaces with the mOTUs taxonomic profiling tool.

View Article and Find Full Text PDF

The global nitrogen (N) cycle has been strongly altered by anthropogenic activities, including increased input of bioavailable N into aquatic ecosystems. Freshwater sediments are hotspots with regards to the turnover and elimination of fixed N, yet the environmental controls on the microbial pathways involved in benthic N removal are not fully understood. Here, we analyze the abundance and expression of microbial genes involved in N transformations using metagenomics and -transcriptomics across sediments of 12 Swiss lakes that differ in sedimentation rates and trophic regimes.

View Article and Find Full Text PDF

Background: Microbial pdu and cob-cbi-hem gene clusters encode the key enzyme glycerol/diol dehydratase (PduCDE), which mediates the transformation of dietary nutrients glycerol and 1,2-propanediol (1,2-PD) to a variety of metabolites, and enzymes for cobalamin synthesis, a co-factor and shared good of microbial communities. It was the aim of this study to relate pdu as a multipurpose functional trait to environmental conditions and microbial community composition. We collected fecal samples from wild animal species living in captivity with different gut physiology and diet (n = 55, in total 104 samples), determined occurrence and diversity of pdu and cob-cbi-hem using a novel approach combining metagenomics with quantification of metabolic and genetic biomarkers, and conducted in vitro fermentations to test for trait-based activity.

View Article and Find Full Text PDF

The NEREA Augmented Observatory: an integrative approach to marine coastal ecology.

Sci Data

September 2024

Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.

Article Synopsis
  • The NEREA initiative focuses on creating an augmented observatory in the Gulf of Naples to improve our understanding of marine ecosystems through a comprehensive approach.
  • It combines traditional research methods with advanced techniques like metabarcoding and metagenomics, building on past expeditions and research sites.
  • In its first 10 months (April 2019 to January 2020), NEREA collected extensive data on physical and chemical parameters, plankton biodiversity, and genetics, resulting in significant insights into marine ecosystems.
View Article and Find Full Text PDF

Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies.

View Article and Find Full Text PDF
Article Synopsis
  • The regulation of exon inclusion through alternative splicing enhances the diversity of the transcriptome and proteome, impacting cell behavior.
  • Traditional methods struggle to identify splicing factors due to the complexity of their activity being controlled by various regulatory layers.
  • The proposed VIPER approach allows for the measurement of splicing factor activity based on downstream exon transcript inclusion, revealing patterns linked to tumorigenesis that are undetectable through conventional methods.
View Article and Find Full Text PDF

Background: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake.

View Article and Find Full Text PDF

The defensome of complex bacterial communities.

Nat Commun

March 2024

Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France.

Bacteria have developed various defense mechanisms to avoid infection and killing in response to the fast evolution and turnover of viruses and other genetic parasites. Such pan-immune system (defensome) encompasses a growing number of defense lines that include well-studied innate and adaptive systems such as restriction-modification, CRISPR-Cas and abortive infection, but also newly found ones whose mechanisms are still poorly understood. While the abundance and distribution of defense systems is well-known in complete and culturable genomes, there is a void in our understanding of their diversity and richness in complex microbial communities.

View Article and Find Full Text PDF
Article Synopsis
  • ProTInSeq is a technique for identifying open reading frames (ORFs) in proteins by utilizing transposon insertions that signal when they fall within a protein-coding region.
  • In Mycoplasma pneumoniae, ProTInSeq successfully identifies 83% of known proteins and discovers 158 previously unannotated proteins, including small ORF-encoded proteins (SEPs).
  • This method enhances the understanding of proteomes by offering insights into translational noise and helps to expand the known SEP count from 27 to 329, with a significant portion predicted to have antimicrobial properties.
View Article and Find Full Text PDF

Horizontal gene transfer, the exchange of genetic material through means other than reproduction, is a fundamental force in prokaryotic genome evolution. Genomic persistence of horizontally transferred genes has been shown to be influenced by both ecological and evolutionary factors. However, there is limited availability of ecological information about species other than the habitats from which they were isolated, which has prevented a deeper exploration of ecological contributions to horizontal gene transfer.

View Article and Find Full Text PDF

A cryptic plasmid is among the most numerous genetic elements in the human gut.

Cell

February 2024

Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany. Electronic address:

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut.

View Article and Find Full Text PDF

Marine picoplankton metagenomes and MAGs from eleven vertical profiles obtained by the Malaspina Expedition.

Sci Data

February 2024

Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.

The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean.

View Article and Find Full Text PDF

Functional and evolutionary significance of unknown genes from uncultivated taxa.

Nature

February 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies. Here we analysed 149,842 environmental genomes from multiple habitats and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date.

View Article and Find Full Text PDF

Background: The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster.

View Article and Find Full Text PDF
Article Synopsis
  • Salmonella Typhimurium causes gut inflammation through HilD-controlled virulence factors, which helps the bacteria thrive by overcoming colonization resistance from the microbiota.
  • * However, this inflammation can also lead to the emergence of hilD mutants that have reduced virulence, sparking curiosity about what keeps the original virulent strain dominant in nature.
  • * Research shows that transferring microbiota from healthy hosts can inhibit the growth of these less virulent mutants, and that a balanced microbiota is crucial for S. Typhimurium's survival and virulence during gut inflammation.
View Article and Find Full Text PDF

Ocean-wide comparisons of mesopelagic planktonic community structures.

ISME Commun

August 2023

Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France.

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean.

View Article and Find Full Text PDF

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean.

View Article and Find Full Text PDF

Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf.

View Article and Find Full Text PDF

Pervasive tandem duplications and convergent evolution shape coral genomes.

Genome Biol

June 2023

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France.

Background: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species.

Results: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf.

View Article and Find Full Text PDF

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes.

View Article and Find Full Text PDF

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e.

View Article and Find Full Text PDF