58 results match your criteria: "Institute of Materials and Machine Mechanics[Affiliation]"

Vacuum-Nitrogen Assisted (VANS) Topotactical Deintercalation for Extremely Fast Production of Functionalized Silicene Nanosheets.

Small

December 2024

Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Sede di Agrate Brianza, Via C. Olivetti 2, Agrate Brianza, I-20864, Italy.

Silicene, the analog of graphene composed of silicon atoms arranged in a honeycomb lattice, has garnered significant attention due to its unique properties, positioning it as a promising candidate for various applications in electronic devices, photovoltaics, photocatalysis, and biomedicals. While the chemical synthesis of silicene nanosheets has traditionally involved time-spending and expensive- methods, this study introduces a rapid vacuum/nitrogen cycle assisted (VANS) protocol that dramatically speeds up the production of silicene. The strategic implementation of vacuum/nitrogen cycles provides the efficient removal of the generated hydrogen, boosting the overall reaction kinetics while maintaining inert reaction conditions to prevent oxidation.

View Article and Find Full Text PDF

Gross morphology and adhesion-associated physical properties of Drosophila larval salivary gland glue secretion.

Sci Rep

April 2024

Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Dúbravská Cesta 9, 84505, Bratislava, Slovakia.

One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing.

View Article and Find Full Text PDF

The Effect of Foaming Agents on the Thermal Behavior of Aluminum Precursors.

Materials (Basel)

February 2024

Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9/6319, 84513 Bratislava, Slovakia.

Various foaming agents can be used to achieve foaming of the precursors obtained by using the powder metallurgy method. However, the thermal behavior of pure aluminum precursors with different foaming agents has been studied very little in recent times. For the production of aluminum foams with closed cells, 1 wt.

View Article and Find Full Text PDF

Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker.

Sensors (Basel)

February 2024

Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia.

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is widely acknowledged in bone tissue engineering due to its mesoporous structure, large surface area, and bioactivity. Recent research indicates that introduction of metallic ions has beneficial impacts on bone metabolism and angiogenesis. Thus, the features of MBG can be modified by incorporating combinations of ions, such as magnesium (Mg) and copper (Cu), which can play a considerable role in bone formation, influencing angiogenesis, osteogenesis, as well as antibacterial properties.

View Article and Find Full Text PDF

In this study, the surface laser treatment of a new type of dental biomaterial, a Ti-graphite composite, prepared by low-temperature powder metallurgy, was investigated. Different levels of output laser power and the scanning speed of the fiber nanosecond laser with a wavelength of 1064 nm and argon as a shielding gas were used in this experiment. The surface integrity of the machined surfaces was evaluated to identify the potential for the dental implant's early osseointegration process, including surface roughness parameter documentation by contact and non-contact methods, surface morphology assessment by scanning electron microscopy, and surface wettability estimation using the sessile drop technique.

View Article and Find Full Text PDF

An influence of carbon nanotubes and carbon nanospheres coated by Au-Pd and Pt on the microstructure of solder/copper joints at room temperature and after aging at sub-zero temperature. The carbon nanosized admixtures were mixed with ternary Sn3.0Ag0.

View Article and Find Full Text PDF

The main number of current researches has been focused on the microstructure and mechanical properties of the Sn-based Sn-Ag-Cu-based solders, while various kinds of nanosized particles have been added. The synthesis and handling of ceramic nanosized powder are much easier than of metal nanoparticles. In addition, metal nanoparticles solved in solder joints during the soldering process or by thermal aging could behave as an alloying element similar to bulk metal additions, while ceramic nanoparticles retain their chemically inactive behavior in various thermal, thermo-mechanical, and electrical constraints.

View Article and Find Full Text PDF

Solid-state batteries have the potential to replace the current generation of liquid electrolyte batteries. However, the major limitation resulting from their solid-state architecture is the gradual loss of ionic conductivity due to the loss of physical contact between the individual battery components during charging/discharging. This is mainly due to mechanical stresses caused by volume changes in the cathode and anode during lithiation and delithiation.

View Article and Find Full Text PDF

Inherent brittleness, which easily leads to crack formation and propagation during use, is a serious problem for protective ceramic thin-film applications. Superlattice architectures, with alternating nm-thick layers of typically softer/stiffer materials, have been proven powerful method to improve the mechanical performance of, e.g.

View Article and Find Full Text PDF

The presented work deals with the investigation of mechanical tribological properties on Inconel 625 superalloy, which is welded on a 16Mo3 steel pipe. The wall thickness of the basic steel pipe was 7 mm, while the average thickness of the welded layer was 3.5 mm.

View Article and Find Full Text PDF

The paper deals with the dilatometric study of high-alloy martensitic tool steel with the designation M398 (BÖHLER), which is produced by the powder metallurgy process. These materials are used to produce screws for injection molding machines in the plastic industry. Increasing the life cycle of these screws leads to significant economic savings.

View Article and Find Full Text PDF

Evaluation of enzymatic stamp removal strategies on handmade (cellulose-based) and machine-made (lignin-containing) papers.

Int J Biol Macromol

July 2023

Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; Caravella, s.r.o., Tupolevova 2, 851 01 Bratislava, Slovakia. Electronic address:

Two different biocleaning techniques for stamp removal from different paper samples (handmade and machine-made) were investigated. Cellulose is the main component of handmade paper, while higher concentration of lignin is present in machine-made paper. Biocleaning methods included the direct application on paper surfaces of the extracellular enzymatic mixture (EEM) extracted from the yeast Sporidiobolus metaroseus and the recombinant protein CthediskatG of Chaetomium thermophilum var.

View Article and Find Full Text PDF

New Insights of Powder Metallurgy: Microstructure, Durability and Properties.

Materials (Basel)

March 2023

National Metal and Materials Technology Center (MTEC), National Sciences and Technology Development Agency (NSTDA), 114 Thailand Science Park, Klong 1, Klong Luang, Pathumthani 12120, Thailand.

This Special Issue of , entitled "New Insight of Powder Metallurgy: Microstructure, Durability and Properties", aimed to publish original and review papers on new scientific and applied research making significant contributions to our findings and understanding of the current developments and trends in powder metallurgy (PM) [...

View Article and Find Full Text PDF

The strawberry () is a nutrient-rich fruit with high content of health-beneficial compounds. However, strawberries are susceptible to mechanical damage and microbiological contamination which can cause changes in fruit sensory properties. These changes consequently effect on ripening and shelf life of the strawberry.

View Article and Find Full Text PDF

The present work investigates the influence of isothermal annealing on the microstructure and oxidation behavior of nanocomposite coatings. AlTiSiN/TiSiN coatings with TiSiN adhesive layer were deposited onto a high-speed steel substrate via physical vapor deposition. The coatings were investigated in the as-deposited state as well as after annealing in air at 700, 800, 900 and 1000 °C, respectively.

View Article and Find Full Text PDF

This work presents an energy-efficient, cheap, and rapid production method of a metal-ceramic preform with open porosity suitable for liquid metal infiltration and filtration applications. It is based on cold isostatic pressing of a mixture of relatively hard Ni and AlO powders with the addition of small amount of Al powders, acting as a binding agent. Open porosity is primarily controlled by AlO particles partially separating Ni particles from mutual contacts.

View Article and Find Full Text PDF

The few-layer transition metal dichalcogenides (TMD) are an attractive class of materials due to their unique and tunable electronic, optical, and chemical properties, controlled by the layer number, crystal orientation, grain size, and morphology. One of the most commonly used methods for synthesizing the few-layer TMD materials is the chemical vapor deposition (CVD) technique. Therefore, it is crucial to develop in situ inspection techniques to observe the growth of the few-layer TMD materials directly in the CVD chamber environment.

View Article and Find Full Text PDF

Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots.

Nanomaterials (Basel)

November 2022

Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.

Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted.

View Article and Find Full Text PDF

Composite materials based on magnesium-lithium (MgLi) and magnesium-yttrium (MgY) matrices reinforced with unidirectional carbon fibers were prepared using the gas pressure infiltration method. Two types of carbon fibers were used, high-strength PAN-based T300 fibers and high-modulus pitch-based Granoc fibers. The PAN-based carbon fibers have an internal turbostratic structure composed of crystallites.

View Article and Find Full Text PDF

Redox features of hexaammineruthenium(III) on MXene modified interface: Three options for affinity biosensing.

Anal Chim Acta

September 2022

Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38, Bratislava, Slovak Republic. Electronic address:

In this article we describe construction of a bioreceptive interface for detection of a breast cancer biomarker carbohydrate antigen CA15-3. The conductive interface was patterned by a 2D nanomaterial MXene, to which a mixed layer containing sulfobetaine and carboxybetaine was electrochemically grafted through a diazonium moiety. Such a modified interface was then applied for covalent immobilisation of anti-CA15-3 antibody as a bioreceptive probe for detection of a breast cancer biomarker.

View Article and Find Full Text PDF

Unique structure and ability to control the surface termination groups of MXenes make these materials extremely promising for solid lubrication applications. Due to the challenging delamination process, the tribological properties of two-dimensional MXenes particles have been mostly investigated as additive components in the solvents working in the macrosystem, while the understanding of the nanotribological properties of mono- and few-layer MXenes is still limited. Here, we investigate the nanotribological properties of mono- and double-layer TiCT MXenes deposited by the Langmuir-Schaefer technique on SiO/Si substrates.

View Article and Find Full Text PDF

Processing and Microstructure of As-Cast Ti-45Al-2W-xC Alloys.

Materials (Basel)

July 2022

Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic.

The metallurgical preparation and microstructure of as-cast Ti-45Al-2W-xC (in at.%) alloys were investigated. Five alloys with carbon content ranging from 0.

View Article and Find Full Text PDF

Nanomaterials play an important role in metal matrix composites (MMC). In this study, 3.0 wt.

View Article and Find Full Text PDF