93 results match your criteria: "Institute of Materials Science of Barcelona[Affiliation]"

The photoconversion of a norbornadiene (NBD) derivative was studied under high-intensity mono- and polychromatic light conditions at high concentrations. The photoisomerization quantum yield (ϕ), proceeding from NBD to its quadricyclane (QC) isomer, was determined using a tunable OPO laser and a solar simulator light source. The solar simulator was designed to mimic the AM1.

View Article and Find Full Text PDF

Optically Controlled Thermochromic Switching for Multi-Input Molecular Logic.

Angew Chem Int Ed Engl

November 2022

School of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, China.

Leuco dye-based thermochromic materials offer enormous potential for visible molecular logic due to the appealing reversible color-changing effect. The stable color state is uncontrollable as it depends only on the spontaneous protonation of the leuco dye and color developer. There is still a challenge to propose an effective approach to control bistable color function at required temperature.

View Article and Find Full Text PDF

Catalyst activity can depend distinctly on nanoparticle size and shape. Therefore, understanding the structure sensitivity of catalytic reactions is of fundamental and technical importance. Experiments with single-particle resolution, where ensemble-averaging is eliminated, are required to study it.

View Article and Find Full Text PDF

Precise arrangements of plasmonic nanoparticles on substrates are important for designing optoelectronics, sensors and metamaterials with rational electronic, optical and magnetic properties. Bottom-up synthesis offers unmatched control over morphology and optical response of individual plasmonic building blocks. Usually, the incorporation of nanoparticles made by bottom-up wet chemistry starts from batch synthesis of colloids, which requires time-consuming and hard-to-scale steps like ligand exchange and self-assembly.

View Article and Find Full Text PDF

A rechargeable molecular solar thermal system below 0 °C.

Chem Sci

June 2022

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication, Ministry of Education, Shanghai Jiao Tong University Shanghai 200240 China

An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 °C.

View Article and Find Full Text PDF

Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications.

View Article and Find Full Text PDF

Advanced personalized immunotherapies still have to overcome several biomedical and technical limitations before they become a routine cancer treatment in spite of recent achievements. In adoptive cell therapy (ACT), the capacity to obtain adequate numbers of therapeutic T cells in the patients following treatment should be improved. Moreover, the time and costs to produce these T cells should be reduced.

View Article and Find Full Text PDF

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence.

View Article and Find Full Text PDF

Molecular solar-thermal energy storage (MOST) systems are based on photoswitches that reversibly convert solar energy into chemical energy. In this context, bicyclooctadienes (BODs) undergo a photoinduced transformation to the corresponding higher energy tetracyclooctanes (TCOs), but the photoswitch system has not until now been evaluated for MOST application, due to the short half-life of the TCO form and limited available synthetic methods. The BOD system degrades at higher temperature a retro-Diels-Alder reaction, which complicates the synthesis of the compounds.

View Article and Find Full Text PDF

AgS nanoparticles are near-infrared (NIR) probes providing emission in a specific spectral range (~1200 nm), and superparamagnetic iron oxide nanoparticles (SPION) are colloidal systems able to respond to an external magnetic field. A disadvantage of AgS NPs is the attenuated luminescent properties are reduced in aqueous media and human fluids. Concerning SPION, the main drawback is the generation of undesirable clusters that reduce particle stability.

View Article and Find Full Text PDF

Molecular photoswitches can under certain conditions be used to store solar energy in the so-called molecular solar thermal storage systems, which is an interesting technology for renewable energy solutions. The current investigations focus on the performance of seven different density functional theory (DFT) methods (B3LYP, CAM-B3LYP, PBE0, M06-2X, ωB97X-D, B2PLYP, and PBE0DH) when predicting geometries and thermochemical properties of the [2.2.

View Article and Find Full Text PDF

Glass-fiber-reinforced polymer (GFRP) composites represent one of the most exploited composites due to their outstanding mechanical properties, light weight and ease of manufacture. However, one of the main limitations of GFRP composites is their weak inter-laminar properties. This leads to resin delamination and loss of mechanical properties.

View Article and Find Full Text PDF

Gold nanoparticles are exciting materials in nanotechnology and nanoscience research and are being applied across a wide range of fields including imaging, chemical sensing, energy storage, and cancer therapies. In this experiment, students will synthesize two sizes of gold nanospheres (~20 nm and ~100 nm) and will create gold nanostars utilizing a seed-mediated growth synthetic approach. Students will compare how each sample interacts differently with light (absorption and scattering) based on the nanoparticles' size and shape.

View Article and Find Full Text PDF

Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed. The laser processing technology is well extended at the industrial sector for the versatile and high throughput modification of a wide range of materials.

View Article and Find Full Text PDF

The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation. Despite recent advances in the optimization of mesh porous structure, incorporation of anti-adherent coatings or new approaches in the mesh fixation systems, clinicians and manufacturers are still pursuing an optimal material to improve the clinical outcomes at a cost-effective ratio.

View Article and Find Full Text PDF

Limbal stem cells (LSCs) are already used in cell-based treatments for ocular surface disorders. Clinical translation of LSCs-based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.

View Article and Find Full Text PDF

Carrier-assisted cell transplantation offers new strategies to improve the clinical outcomes of cellular therapies. Bacterial nanocellulose (BC) is an emerging biopolymer that might be of great value in the development of animal-free, customizable, and temperature-stable novel cell carriers. Moreover, BC exhibits a myriad of modification possibilities to incorporate additional functionalities.

View Article and Find Full Text PDF

Here we show that molecular doping of polymer thermoelectrics increases the electrical conductivity while reducing the thermal conductivity. A high-throughput methodology based on annealing and doping gradients within individual films is employed to self-consistently analyze and correlate electrical and thermal characteristics for the equivalent of >100 samples. We focus on the benchmark material system poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-]thiophene) (PBTTT) doped with molecular acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).

View Article and Find Full Text PDF

Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds.

Mater Sci Eng C Mater Biol Appl

December 2020

Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark. Electronic address:

For bone tissue engineering applications, scaffolds that mimic the porous structure of the extracellular matrix are highly desirable. Herein, we employ a PCL/HA-based scaffold with a double-scaled architecture of small pores coupled to larger ones. To improve the osteoinductivity of the scaffold, we incorporate two different growth factors via polydopamine (PDA) coating.

View Article and Find Full Text PDF

Pristine and hydrated fluoroapatite (0001).

Acta Crystallogr B Struct Sci Cryst Eng Mater

October 2019

Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.

The surface structure of fluoroapatite (0001) (FAp) under quasi-dry and humid conditions has been probed with surface X-ray diffraction (SXRD). Lateral and perpendicular atomic relaxations corresponding to the FAp termination before and after HO exposure and the location of the adsorbed water molecules have been determined from experimental analysis of the crystal truncation rod (CTR) intensities. The surface under dry conditions exhibits a bulk termination with relaxations in the outermost atomic layers.

View Article and Find Full Text PDF

CCL21-loaded 3D hydrogels for T cell expansion and differentiation.

Biomaterials

November 2020

Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain; Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain. Electronic address:

Recent achievements in the field of immunotherapy, such as the development of engineered T cells used in adoptive cell therapy, are introducing more efficient strategies to combat cancer. Nevertheless, there are still many limitations. For example, these T cells are challenging to manufacture, manipulate, and control.

View Article and Find Full Text PDF

High levels of performance and stability have been demonstrated for conjugated polymer thin-film transistors in recent years, making them promising materials for flexible electronic circuits and displays. For sensing applications, however, most research efforts have been focusing on electrochemical sensing devices. Here we demonstrate a highly stable biosensing platform using polymer transistors based on the dual-gate mechanism.

View Article and Find Full Text PDF

Moiré superlattices in van der Waals heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. Indeed, electrons in these structures have been recently found to exhibit a number of emergent properties that the individual layers themselves do not exhibit. This includes superconductivity, magnetism, topological edge states, exciton trapping and correlated insulator phases.

View Article and Find Full Text PDF

Corneal trauma and ulcerations are leading causes of corneal blindness around the world. These lesions require attentive medical monitoring since improper healing or infection has serious consequences in vision and quality of life. Amniotic membrane grafts represent the common solution to treat severe corneal wounds.

View Article and Find Full Text PDF